我正在尝试在TensorFlow中运行一个非常简单的神经网络,它将学习对图像进行分类。到目前为止它非常简单,因为我还在学习框架。
到目前为止,我正在努力加载数据 - 我的数据在TXT文件中。每行包含照片的ID和用作标签的二进制数。
到目前为止,这是我的代码(我删除了不相关的部分):
import tensorflow as tf
IMAGE_WIDTH = 240
IMAGE_HEIGHT = 180
NUMBER_OF_CHANNELS = 3
SOURCE_DIR = './data/'
TRAINING_IMAGES_DIR = SOURCE_DIR + 'train/'
LIST_FILE_NAME = 'list.txt'
BATCH_SIZE = 100
TRAINING_SET_SIZE = 15873
def create_photo_and_label_batches(source_directory):
# read the list of photo IDs and labels
photos_list = open(source_directory + LIST_FILE_NAME, 'r')
filenames_list = []
labels_list = []
# get lists of photo file names and labels
for line in photos_list:
filenames_list.append(source_directory + line.split(',')[0] + '.jpg')
labels_list.append([bool(line.split(',')[1])])
# convert the lists to tensors
filenames = tf.convert_to_tensor(filenames_list, dtype=tf.string)
labels = tf.convert_to_tensor(labels_list, dtype=tf.bool)
# create queue with filenames and labels
file_names_queue, labels_queue =
tf.train.slice_input_producer([filenames, labels], num_epochs=1, shuffle=True)
# convert filenames of photos to input vectors
photos_queue = tf.read_file(file_names_queue) # convert filenames to content
photos_queue = tf.image.decode_jpeg(photos_queue, channels=NUMBER_OF_CHANNELS)
photos_queue.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUMBER_OF_CHANNELS])
photos_queue = tf.to_float(photos_queue) # convert uint8 to float32
photos_queue = tf.reshape(photos_queue, [-1]) # flatten the tensor
# slice the data into mini batches
return tf.train.batch([photos_queue, labels_queue], batch_size=BATCH_SIZE)
def main(_):
# load the training set
training_photo_batch, training_label_batch =
create_photo_and_label_batches(TRAINING_IMAGES_DIR)
# create the model
x = training_photo_batch
W = tf.Variable(tf.zeros([IMAGE_WIDTH * IMAGE_HEIGHT * NUMBER_OF_CHANNELS, 1],
dtype=tf.float32)) # weights tensor
b = tf.Variable(tf.zeros([1], dtype=tf.float32)) # bias
y_ = training_label_batch
y = tf.matmul(x, W) + b
# define loss and optimizer
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# do the training
sess = tf.InteractiveSession()
tf.initialize_all_variables().run()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(TRAINING_SET_SIZE // BATCH_SIZE):
sess.run(train_step)
# stop the queue threads and properly close the session
coord.request_stop()
coord.join(threads)
sess.close()
如您所见,网络非常简单,只有一个神经元。我受到这里列出的代码的启发:Tensorflow read images with labels运行代码后,我在第一次迭代时遇到以下错误:
tensorflow.python.framework.errors_impl.OutOfRangeError: FIFOQueue '_1_batch/fifo_queue' is closed and has insufficient elements (requested 100, current size 0)
[[Node: batch = QueueDequeueMany[_class=["loc:@batch/fifo_queue"], component_types=[DT_FLOAT, DT_BOOL], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
我已经尝试将问题解决了几个小时了。到目前为止,我检查过:
不知道我还应该检查什么。似乎我对TensorFlow中的队列不了解,但我不知道到底是什么。在此先感谢您的帮助!
答案 0 :(得分:2)
这可能是由num_epochs=1
tf.train.slice_input_producer([filenames, labels], num_epochs=1, shuffle=True)
引起的。你可以检查slice_input_producer
的api,它解释了:num_epochs:一个整数(可选)。如果指定,slice_input_producer会在生成OutOfRange错误之前生成每个切片num_epochs次。