我有一个表格数据如下:
+-----------+--------+-------------+
| City Name | URL | Read Count |
+-----------+--------+-------------+
| Gurgaon | URL1 | 3 |
| Gurgaon | URL3 | 6 |
| Gurgaon | URL6 | 5 |
| Gurgaon | URL4 | 1 |
| Gurgaon | URL5 | 5 |
| Delhi | URL3 | 4 |
| Delhi | URL7 | 2 |
| Delhi | URL5 | 1 |
| Delhi | URL6 | 6 |
| Punjab | URL6 | 5 |
| Punjab | URL4 | 1 |
| Mumbai | URL5 | 5 |
+-----------+--------+-------------+
我想看到类似的事情 - >前三名阅读文章(如果存在)每个城市
+-----------+--------+--------+
| City Name | URL | Count |
+-----------+--------+--------+
| Gurgaon | URL3 | 6 |
| Gurgaon | URL6 | 5 |
| Gurgaon | URL5 | 5 |
| Delhi | URL6 | 6 |
| Delhi | URL3 | 4 |
| Delhi | URL1 | 3 |
| Punjab | URL6 | 5 |
| Punjab | URL4 | 1 |
| Mumbai | URL5 | 5 |
+-----------+--------+--------+
我正在使用Spark 2.0.2,Scala 2.11.8
答案 0 :(得分:2)
您可以使用窗口功能来获取输出。
import org.apache.spark.sql.expressions.Window
val df = sc.parallelize(Seq(
("Gurgaon","URL1",3), ("Gurgaon","URL3",6), ("Gurgaon","URL6",5), ("Gurgaon","URL4",1),("Gurgaon","URL5",5)
("DELHI","URL3",4), ("DELHI","URL7",2), ("DELHI","URL5",1), ("DELHI","URL6",6),("Mumbai","URL5",5)
("Punjab","URL6",6), ("Punjab","URL4",1))).toDF("City", "URL", "Count")
df.show()
+-------+----+-----+
| City| URL|Count|
+-------+----+-----+
|Gurgaon|URL1| 3|
|Gurgaon|URL3| 6|
|Gurgaon|URL6| 5|
|Gurgaon|URL4| 1|
|Gurgaon|URL5| 5|
| DELHI|URL3| 4|
| DELHI|URL7| 2|
| DELHI|URL5| 1|
| DELHI|URL6| 6|
| Mumbai|URL5| 5|
| Punjab|URL6| 6|
| Punjab|URL4| 1|
+-------+----+-----+
val w = Window.partitionBy($"City").orderBy($"Count".desc)
val dfTop = df.withColumn("row", rowNumber.over(w)).where($"row" <= 3).drop("row")
dfTop.show
+-------+----+-----+
| City| URL|Count|
+-------+----+-----+
|Gurgaon|URL3| 6|
|Gurgaon|URL6| 5|
|Gurgaon|URL5| 5|
| Mumbai|URL5| 5|
| DELHI|URL6| 6|
| DELHI|URL3| 4|
| DELHI|URL7| 2|
| Punjab|URL6| 6|
| Punjab|URL4| 1|
+-------+----+-----+
在Spark 1.6.2上测试输出
答案 1 :(得分:1)
窗口函数可能是要走的路,并且有一个内置函数用于此目的:
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.{rank, desc}
val window = Window.partitionBy($"City").orderBy(desc("Count"))
val dfTop = df.withColumn("rank", rank.over(window)).where($"rank" <= 3)