我想在DataFrame上使用带有自己的相等比较器的GroupBy运算符。
让我们假设我想执行以下操作:
df.groupBy("Year","Month").sum("Counter")
在此DataFrame中:
Year | Month | Counter
---------------------------
2012 | Jan | 100
12 | January | 200
12 | Janu | 300
2012 | Feb | 400
13 | Febr | 500
我必须实现两个比较器:
1)对于年份列:p.e. “ 2012” ==“ 12”
2)对于月份列:p.e。 “ Jan” ==“ January” ==“ Janu”
让我们假设我已经实现了这两个比较器。我该如何调用它们?就像在this示例中一样,我已经知道我必须将DataFrame转换为RDD,才能使用比较器。
我考虑过使用RDD GroupBy。
请注意,我确实需要使用比较器来完成此操作。我不能使用UDF,更改数据或创建新列。未来的想法是拥有密文列,其中有一些函数可以让我比较两个密文是否相同。我想在比较器中使用它们。
编辑:
此刻,我试图仅用一列来完成此操作,例如:
df.groupBy("Year").sum("Counter")
我有一个包装器类:
class ExampleWrapperYear (val year: Any) extends Serializable {
// override hashCode and Equals methods
}
然后,我正在这样做:
val rdd = df.rdd.keyBy(a => new ExampleWrapperYear(a(0))).groupByKey()
我的问题是如何进行“求和”,以及如何对多列使用keyBy以使用ExampleWrapperYear和ExampleWrapperMonth。
答案 0 :(得分:1)
您可以使用udfs来实现使其成为标准的年/月格式的逻辑
def toYear : (Integer) => Integer = (year:Integer)=>{
2000 + year % 100 //assuming all years in 2000-2999 range
}
def toMonth : (String) => String = (month:String)=>{
month match {
case "January"=> "Jan"
case "Janu"=> "Jan"
case "February" => "Feb"
case "Febr" => "Feb"
case _ => month
}
}
val toYearUdf = udf(toYear)
val toMonthUdf = udf(toMonth)
df.groupBy( toYearUdf(col("Year")), toMonthUdf(col("Month"))).sum("Counter").show()
答案 1 :(得分:1)
此解决方案应该有效。以下是实现hashCode和equals的案例类(我们可以将它们称为比较器)。
您可以基于不同的密文修改/更新hashCode和等值符
case class Year(var year:Int){
override def hashCode(): Int = {
this.year = this.year match {
case 2012 => 2012
case 12 => 2012
case 13 => 2013
case _ => this.year
}
this.year.hashCode()
}
override def equals(that: Any): Boolean ={
val year1 = 2000 + that.asInstanceOf[Year].year % 100
val year2 = 2000 + this.year % 100
if (year1 == year2)
true
else
false
}
}
case class Month(var month:String){
override def hashCode(): Int = {
this.month = this.month match {
case "January" => "Jan"
case "Janu" => "Jan"
case "February" => "Feb"
case "Febr" => "Feb"
case _ => this.month
}
this.month.hashCode
}
override def equals(that: Any): Boolean ={
val month1 = this.month match {
case "January" => "Jan"
case "Janu" => "Jan"
case "February" => "Feb"
case "Febr" => "Feb"
case _ => this.month
}
val month2 = that.asInstanceOf[Month].month match {
case "January" => "Jan"
case "Janu" => "Jan"
case "February" => "Feb"
case "Febr" => "Feb"
case _ => that.asInstanceOf[Month].month
}
if (month1.equals(month2))
true
else
false
}
}
这是分组键的重要比较器,仅使用单个col比较器
case class Key(var year:Year, var month:Month){
override def hashCode(): Int ={
this.year.hashCode() + this.month.hashCode()
}
override def equals(that: Any): Boolean ={
if ( this.year.equals(that.asInstanceOf[Key].year) && this.month.equals(that.asInstanceOf[Key].month))
true
else
false
}
}
case class Record(year:Int,month:String,counter:Int)
val df = spark.read.format("com.databricks.spark.csv")
.option("header", "true")
.option("inferSchema", "true")
.load("data.csv").as[Record]
df.rdd.groupBy[Key](
(record:Record)=>Key(Year(record.year), Month(record.month)))
.map(x=> Record(x._1.year.year, x._1.month.month, x._2.toList.map(_.counter).sum))
.toDS().show()
给出
+----+-----+-------+
|year|month|counter|
+----+-----+-------+
|2012| Feb| 800|
|2013| Feb| 500|
|2012| Jan| 700|
+----+-----+-------+
for this input in data.csv
Year,Month,Counter
2012,February,400
2012,Jan,100
12,January,200
12,Janu,300
2012,Feb,400
13,Febr,500
2012,Jan,100
请注意,对于“年”和“月”案例类,还将其值更新为标准值(否则将无法预测选择哪个值)。