我使用我的域文本语料库生成了100D word2vec模型,例如合并常用短语(good bye => good_bye)。然后我提取了1000个所需单词的向量。
所以我有一个像这样的1000 numpy.array:
[[-0.050378,0.855622,1.107467,0.456601,...[100 dimensions],
[-0.040378,0.755622,1.107467,0.456601,...[100 dimensions],
...
...[1000 Vectors]
]
和单词数组一样:
["hello","hi","bye","good_bye"...1000]
我在我的数据上运行了K-Means,我得到的结果很有意义:
X = np.array(words_vectors)
kmeans = KMeans(n_clusters=20, random_state=0).fit(X)
for idx,l in enumerate(kmeans.labels_):
print(l,words[idx])
--- Output ---
0 hello
0 hi
1 bye
1 good_bye
0 =问候1 =告别
然而,有些词语让我觉得层次聚类更适合这项任务。我尝试过使用AgglomerativeClustering,不幸的是......对于这个Python nobee来说,事情变得复杂了,我迷路了。
我如何对我的向量进行聚类,因此输出将是一个或多或少的树形图,就像在this wiki页面上找到的一样?
答案 0 :(得分:7)
到目前为止,我遇到了同样的问题! 在网上搜索后总是发现你的帖子(关键字=在word2vec上的层次聚类)。 我不得不给你一个可能有效的解决方案。
sentences = ['hi', 'hello', 'hi hello', 'goodbye', 'bye', 'goodbye bye']
sentences_split = [s.lower().split(' ') for s in sentences]
import gensim
model = gensim.models.Word2Vec(sentences_split, min_count=2)
from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage
l = linkage(model.wv.syn0, method='complete', metric='seuclidean')
# calculate full dendrogram
plt.figure(figsize=(25, 10))
plt.title('Hierarchical Clustering Dendrogram')
plt.ylabel('word')
plt.xlabel('distance')
dendrogram(
l,
leaf_rotation=90., # rotates the x axis labels
leaf_font_size=16., # font size for the x axis labels
orientation='left',
leaf_label_func=lambda v: str(model.wv.index2word[v])
)
plt.show()