我已经看到了这个问题的不同版本,但从未得到过很好的答案。我有一个MXN阵列,想要返回M尺寸的所有可能组合。让我举个例子,有一个3X3阵列。结果应该是27种组合。我在这里尝试递归方法但到目前为止没有运气。
答案 0 :(得分:1)
请尝试此程序可以帮助您。我用过这个矩阵
int[][] matrix = {{1, 2, 3},
{4, 5, 6},
{7, 8, 9}};
输出为27种组合,如下所示。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class Main {
private static List<int[]> combine(int[][] matrix) {
int sizeArray[] = new int[matrix.length];
int counterArray[] = new int[matrix.length];
int total = 1;
for (int i = 0; i < matrix.length; ++i) {
sizeArray[i] = matrix[i].length;
total *= matrix[i].length;
}
List<int[]> list = new ArrayList<>(total);
StringBuilder sb;
for (int count = total; count > 0; --count) {
sb = new StringBuilder();
for (int i = 0; i < matrix.length; ++i) {
sb.append(matrix[i][counterArray[i]]);
}
int tmpi[] = new int[sb.toString().length()];
for (int tmp = 0; tmp < sb.toString().length(); tmp++) {
tmpi[tmp] = Integer.parseInt("" + sb.toString().toCharArray()[tmp]);
}
list.add(tmpi);
for (int incIndex = matrix.length - 1; incIndex >= 0; --incIndex) {
if (counterArray[incIndex] + 1 < sizeArray[incIndex]) {
++counterArray[incIndex];
break;
}
counterArray[incIndex] = 0;
}
}
return list;
}
public static void main(String[] args) {
int[][] matrix = {{1, 2, 3},
{4, 5, 6},
{7, 8, 9}};
int i = 0;
for (int[] c : (combine(matrix))) {
System.out.println(Arrays.toString(c));
i++;
}
System.out.println(i);
}
}
测试
[1, 4, 7]
[1, 4, 8]
[1, 4, 9]
[1, 5, 7]
[1, 5, 8]
[1, 5, 9]
[1, 6, 7]
[1, 6, 8]
[1, 6, 9]
[2, 4, 7]
[2, 4, 8]
[2, 4, 9]
[2, 5, 7]
[2, 5, 8]
[2, 5, 9]
[2, 6, 7]
[2, 6, 8]
[2, 6, 9]
[3, 4, 7]
[3, 4, 8]
[3, 4, 9]
[3, 5, 7]
[3, 5, 8]
[3, 5, 9]
[3, 6, 7]
[3, 6, 8]
[3, 6, 9]
27
答案 1 :(得分:0)
递归版:
import java.util.Arrays;
public class Matrix {
private static int counter = 0;
private static void combin2(int depth, int[][]matrix, int[] output)
{
int[] row = matrix[depth];
if(depth == 0) {
counter = 0;
output = new int[matrix.length];
System.out.println("matrix length: " + matrix.length);
}
for(int i=0; i<row.length; i++) {
output[depth] = row[i];
if(depth == (matrix.length-1)) {
//print the combination
System.out.println(Arrays.toString(output));
counter++;
} else {
//recursively generate the combination
combin2(depth+1, matrix, output);
}
}
}
public static void main(String[] args) {
int[][] matrix = new int[][] {{1, 2, 3, 4}, {5, 6, 7, 8}};
combin2(0, matrix, null);
System.out.println("counter = " + counter);
System.out.println("");
matrix = new int[][]{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
combin2(0, matrix, null);
System.out.println("counter = " + counter);
System.out.println("");
matrix = new int[][]{{1, 2, 3}, {4,5,6}, {7,8,9}, {10,11,12}};
combin2(0, matrix, null);
System.out.println("counter = " + counter);
System.out.println("");
}
}
输出:
matrix length: 2
[1, 5]
[1, 6]
[1, 7]
[1, 8]
[2, 5]
[2, 6]
[2, 7]
[2, 8]
[3, 5]
[3, 6]
[3, 7]
[3, 8]
[4, 5]
[4, 6]
[4, 7]
[4, 8]
counter = 16
matrix length: 3
[1, 4, 7]
[1, 4, 8]
[1, 4, 9]
[1, 5, 7]
[1, 5, 8]
[1, 5, 9]
[1, 6, 7]
[1, 6, 8]
[1, 6, 9]
[2, 4, 7]
[2, 4, 8]
[2, 4, 9]
[2, 5, 7]
[2, 5, 8]
[2, 5, 9]
[2, 6, 7]
[2, 6, 8]
[2, 6, 9]
[3, 4, 7]
[3, 4, 8]
[3, 4, 9]
[3, 5, 7]
[3, 5, 8]
[3, 5, 9]
[3, 6, 7]
[3, 6, 8]
[3, 6, 9]
counter = 27
matrix length: 4
[1, 4, 7, 10]
[1, 4, 7, 11]
[1, 4, 7, 12]
[1, 4, 8, 10]
[1, 4, 8, 11]
[1, 4, 8, 12]
[1, 4, 9, 10]
[1, 4, 9, 11]
[1, 4, 9, 12]
[1, 5, 7, 10]
[1, 5, 7, 11]
[1, 5, 7, 12]
[1, 5, 8, 10]
[1, 5, 8, 11]
[1, 5, 8, 12]
[1, 5, 9, 10]
[1, 5, 9, 11]
[1, 5, 9, 12]
[1, 6, 7, 10]
[1, 6, 7, 11]
[1, 6, 7, 12]
[1, 6, 8, 10]
[1, 6, 8, 11]
[1, 6, 8, 12]
[1, 6, 9, 10]
[1, 6, 9, 11]
[1, 6, 9, 12]
[2, 4, 7, 10]
[2, 4, 7, 11]
[2, 4, 7, 12]
[2, 4, 8, 10]
[2, 4, 8, 11]
[2, 4, 8, 12]
[2, 4, 9, 10]
[2, 4, 9, 11]
[2, 4, 9, 12]
[2, 5, 7, 10]
[2, 5, 7, 11]
[2, 5, 7, 12]
[2, 5, 8, 10]
[2, 5, 8, 11]
[2, 5, 8, 12]
[2, 5, 9, 10]
[2, 5, 9, 11]
[2, 5, 9, 12]
[2, 6, 7, 10]
[2, 6, 7, 11]
[2, 6, 7, 12]
[2, 6, 8, 10]
[2, 6, 8, 11]
[2, 6, 8, 12]
[2, 6, 9, 10]
[2, 6, 9, 11]
[2, 6, 9, 12]
[3, 4, 7, 10]
[3, 4, 7, 11]
[3, 4, 7, 12]
[3, 4, 8, 10]
[3, 4, 8, 11]
[3, 4, 8, 12]
[3, 4, 9, 10]
[3, 4, 9, 11]
[3, 4, 9, 12]
[3, 5, 7, 10]
[3, 5, 7, 11]
[3, 5, 7, 12]
[3, 5, 8, 10]
[3, 5, 8, 11]
[3, 5, 8, 12]
[3, 5, 9, 10]
[3, 5, 9, 11]
[3, 5, 9, 12]
[3, 6, 7, 10]
[3, 6, 7, 11]
[3, 6, 7, 12]
[3, 6, 8, 10]
[3, 6, 8, 11]
[3, 6, 8, 12]
[3, 6, 9, 10]
[3, 6, 9, 11]
[3, 6, 9, 12]
counter = 81