假设正常的点积:
M3[i,k] = sum_j(M1[i,j] * M2[j,k])
现在我想通过总和其他操作替换总和,比如最大值:
M3[i,k] = max_j(M1[i,j] * M2[j,k])
此问题与Numpy: Dot product with max instead of sum
平行现在才考虑解决方案
M3 = np.sum(M1[:,:,None]*M2[None,:,:], axis=1)
或
M3 = np.max(M1[:,:,None]*M2[None,:,:], axis=1)
应该引用密集矩阵M1
和稀疏矩阵M2
。不幸的是,SciPy中没有3D稀疏矩阵。
基本上,这意味着在
M3[i,k] = max_j(M1[i,j] * M2[j,k])
我们仅在j
上进行迭代,以便M2[j,k]!=0
。
解决此问题的最有效方法是什么?
答案 0 :(得分:2)
这是一种使用一个循环的方法,该循环遍历公共减少轴 -
from scipy.sparse import csr_matrix
import scipy as sp
def reduce_after_multiply(M1, M2):
# M1 : Nump array
# M2 : Sparse matrix
# Output : NumPy array
# Get nonzero indices. Get start and stop indices representing
# intervaled indices along the axis of reduction containing
# the nonzero indices.
r,c = sp.sparse.find(M2.T)[:2]
IDs, start = np.unique(r,return_index=1)
stop = np.append(start[1:], c.size)
# Initialize output array and start loop for assigning values
m, n = M1.shape[0], M2.shape[1]
out = np.zeros((m,n))
for iterID,i in enumerate(IDs):
# Non zero indices for each col from M2. Use these to select
# M1's cols and M2's rows. Perform elementwise multiplication.
idx = c[start[iterID]:stop[iterID]]
mult = M1[:,idx]*M2.getcol(i).data
# Use the inteneded ufunc along the second axis.
out[:,i] = np.max(mult, axis=1) # Use any axis supported ufunc here
return out
运行样本以进行验证 -
In [248]: # Input data
...: M1 = np.random.rand(5,3)
...: M2 = csr_matrix(np.random.randint(0,3,(3,1000)))
...:
...: # For variety, let's make one column as all zero.
...: # This should result in corresponding col as all zeros as well.
...: M2[:,1] = 0
...:
In [249]: # Verify
...: out1 = np.max(M1[:,:,None]*M2.toarray()[None,:,:], axis=1)
In [250]: np.allclose(out1, reduce_after_multiply(M1, M2))
Out[250]: True
特别是对于点积,我们有一个内置的点方法,因此它是直截了当的。因此,我们可以将密集数组的第一个输入转换为稀疏矩阵,然后使用稀疏矩阵的.dot
method,就像这样 -
csr_matrix(M1).dot(M2)
让我们验证一下 -
In [252]: # Verify
...: out1 = np.sum(M1[:,:,None]*M2.toarray()[None,:,:], axis=1)
In [253]: out2 = csr_matrix(M1).dot(M2)
In [254]: np.allclose(out1, out2.toarray())
Out[254]: True
答案 1 :(得分:1)
您还可以检查sparse
库,该库通过提供更好的类似于numpy的界面和n维数组来扩展scipy.sparse
:https://github.com/pydata/sparse