如何回收循环中分配的内存:python 2.7

时间:2017-01-03 14:21:56

标签: python garbage-collection memory-profiling

我正在尝试处理一个大~100GB的MD模拟轨迹。以下代码片段是分析代码的方法之一。我希望用大小可以计算机可用内存的块来处理我的轨迹。

在使用memory_profiler进行内存分析时,我发现第136行内存已分配,但即使删除第143行中的对象后也无法释放。我还尝试用等效的列表理解替换第136行,但要获得什么都没有。我无法发现或想出任何这种行为的原因。希望,专家见解会帮助我解决它。感谢。

我正在Ubuntu-16.04 / CentOS 7使用Python 2.7.12使用GCC 5.4.0版本运行此代码。

据我所知,没有完整的代码,下面的输出无法再现。所以, 对于无法共享分散在不同脚本文件中的整个代码,我感到很遗憾。

Line #    Mem usage    Increment   Line Contents
================================================
    33     51.3 MiB      0.0 MiB       @profile
    34                                 def convert_using_pytraj(self, trajIn):
    35     51.3 MiB      0.0 MiB           bonds_list = []
    36     51.3 MiB      0.0 MiB           angles_list = []
    37     51.3 MiB      0.0 MiB           torsions_list = []
    38                                     
    39     51.3 MiB      0.0 MiB           for k in sorted(self.tree.nodes.keys()):
    40     51.3 MiB      0.0 MiB               if self.tree.nodes[k].a2 > 0:
    41     51.3 MiB      0.0 MiB                   bonds_list.append([k-1, self.tree.nodes[k].a2-1])
    42     51.3 MiB      0.0 MiB               if self.tree.nodes[k].a2 > 0 and self.tree.nodes[k].a3 > 0:
    43     51.3 MiB      0.0 MiB                   angles_list.append([k-1, self.tree.nodes[k].a2 -1, self.tree.nodes[k].a3 -1])
    44     51.3 MiB      0.0 MiB               if self.tree.nodes[k].a2 > 0 and self.tree.nodes[k].a3 > 0 and self.tree.nodes[k].a4 > 0:
    45     51.3 MiB      0.0 MiB                   torsions_list.append([k-1, self.tree.nodes[k].a2 -1, self.tree.nodes[k].a3 -1, self.tree.nodes[k].a4 -1])
    46                                     
    47     51.3 MiB      0.0 MiB           n_atom = len(self.inputs['atoms'])
    48     51.3 MiB      0.0 MiB           pseudo_bonds = None 
    49     51.3 MiB      0.0 MiB           if len(self.inputs['pseudo']) % 2 == 0:
    50     51.3 MiB      0.0 MiB               v_tmp = []
    51     51.3 MiB      0.0 MiB               for i in range(0, len(self.inputs['pseudo']), 2):
    52                                             v_tmp.append((self.inputs['pseudo'][i], self.inputs['pseudo'][i+1]))
    53     51.3 MiB      0.0 MiB               if len(v_tmp) > 0:
    54                                             pseudo_bonds = list(v_tmp)
    55     51.4 MiB      0.1 MiB           logger.debug('bond_indices: %s\nangle_indices: %s\n dih_indices%s' % (bonds_list, angles_list, torsions_list))
    56     51.4 MiB      0.0 MiB           logger.debug('pseudo_bonds: %s' % str(pseudo_bonds))
    57     51.4 MiB      0.0 MiB           logger.debug(str((n_atom, n_atom-1, n_atom-2, n_atom-3, self.inputs['roots'])))
    58     51.4 MiB      0.0 MiB           trjs = []
    59     51.4 MiB      0.0 MiB           slices = []
    60                                     
    61     51.4 MiB      0.0 MiB           for tr1 in trajIn:
    62     51.4 MiB      0.0 MiB               trjs.append(tr1[0])
    63     51.4 MiB      0.0 MiB               if len(tr1) == 2:
    64                                             slices.append(tuple([0, tr1[1], 1]))
    65     51.4 MiB      0.0 MiB               elif len(tr1) == 3:
    66                                             slices.append(tuple([tr1[1]-1, tr1[2], 1]))
    67     51.4 MiB      0.0 MiB               elif len(tr1) == 4:
    68     51.4 MiB      0.0 MiB                   slices.append(tuple([tr1[1]-1, tr1[2], tr1[3]]))
    69     51.4 MiB      0.0 MiB           if slices:
    70     51.4 MiB      0.0 MiB               if len(slices) == len(trjs):
    71     54.3 MiB      2.8 MiB                   traj = pt.iterload(trjs, self.inputs['topoFile'], frame_slice=slices)
    72                                         else:
    73                                             raise Exception("Either all trajin should have slices or none")
    74                                     else:
    75                                         traj = pt.iterload(trjs, self.inputs['topoFile'])
    76     54.3 MiB      0.0 MiB           traj_frames_eff = traj.n_frames
    77     54.3 MiB      0.0 MiB           if not self.inputs['blockProcess']:
    78                                         block_size = traj.n_frames
    79                                     else:
    80     54.3 MiB      0.0 MiB               block_size = self.inputs['blockSize']
    81     54.3 MiB      0.0 MiB           logger.debug(str(("Total number of frames: %d" % traj.n_frames)))
    82     90.7 MiB     36.5 MiB           for block_id, block_start in enumerate(range(0, traj_frames_eff, block_size)):
    83     89.9 MiB     -0.8 MiB               if block_start + block_size <= traj_frames_eff:
    84     70.9 MiB    -19.0 MiB                   block_end = block_start + block_size
    85                                         else:
    86     89.9 MiB     19.0 MiB                   block_end = traj_frames_eff
    87     89.9 MiB      0.0 MiB               if block_id != 0:
    88     89.9 MiB      0.0 MiB                   if slices:
    89     89.9 MiB      0.0 MiB                       if len(slices) == len(trjs):
    90     89.9 MiB      0.0 MiB                           traj = pt.iterload(trjs, self.inputs['topoFile'], frame_slice=slices)
    91                                                 else:
    92                                                     raise Exception("Either all trajin should have slices or none")
    93                                             else:
    94                                                 traj = pt.iterload(trjs, self.inputs['topoFile'])       
    95     89.9 MiB      0.0 MiB               if block_end - block_start > 0:
    96     89.9 MiB      0.0 MiB                   logger.debug('Processing %s block %i Frames %i to %i' % (str(trajIn), block_id+1, block_start, block_end))
    97     89.9 MiB      0.0 MiB                   trj_working = traj[range(block_start, block_end)]
    98     90.2 MiB      0.3 MiB                   bonds_val = pt.distance(trj_working, bonds_list, dtype='ndarray')
    99     90.5 MiB      0.2 MiB                   angles_val = pt.angle(trj_working, angles_list, dtype='ndarray')
   100     90.7 MiB      0.2 MiB                   dihedrals_val = pt.dihedral(trj_working, torsions_list, dtype='ndarray')
   101     90.7 MiB      0.0 MiB                   trj_working = None
   102     90.7 MiB      0.0 MiB                   traj = None
   103     90.7 MiB      0.0 MiB                   if not self.inputs['useDegree']:
   104     90.7 MiB      0.0 MiB                       deg2rad = PI / 180.0
   105     90.7 MiB      0.0 MiB                       PI2 = 2 * PI
   106     90.7 MiB      0.0 MiB                       angles_val = angles_val * deg2rad
   107     90.7 MiB      0.0 MiB                       dihedrals_val = dihedrals_val * deg2rad
   108                                                 # move range (-PI, PI) -> (0.0, 2*PI) by adding 2*PI
   109     90.7 MiB      0.0 MiB                       for i in range(angles_val.shape[0]):
   110     90.7 MiB      0.0 MiB                           for j in range(angles_val.shape[1]):
   111     90.7 MiB      0.0 MiB                               if angles_val[i, j] < 0.0:
   112                                                             angles_val[i, j] += PI2
   113     90.7 MiB      0.0 MiB                       for i in range(dihedrals_val.shape[0]):
   114     90.7 MiB      0.0 MiB                           for j in range(dihedrals_val.shape[1]):
   115     90.7 MiB      0.0 MiB                               if dihedrals_val[i, j] < 0.0:
   116     90.7 MiB      0.0 MiB                                   dihedrals_val[i, j] += PI2
   117     90.7 MiB      0.0 MiB                   if self.inputs['usePhase']:
   118                                                 # Substract value of phase angle if phase
   119                                                 # if modified torsion becomes negative add 2*PI [rad] or 180 [deg]
   120                                                 # if modified torsion is positive substract and in deg substract 180
   121     90.7 MiB      0.0 MiB                       modFactor = 360.0 if self.inputs['useDegree'] else PI2
   122     90.7 MiB      0.0 MiB                       for k in range(0, dihedrals_val.shape[0]):                        
   123     90.7 MiB      0.0 MiB                           if (k != self.phase_defn[k + 1] - 1):
   124     90.7 MiB      0.0 MiB                               for fNo in range(dihedrals_val.shape[1]):
   125     90.7 MiB      0.0 MiB                                   dihedrals_val[k, fNo] -= dihedrals_val[self.phase_defn[k + 1] - 1, fNo]
   126     90.7 MiB      0.0 MiB                                   if (dihedrals_val[k, fNo] < 0.0):
   127     90.7 MiB      0.0 MiB                                       dihedrals_val[k, fNo] += modFactor
   128     90.7 MiB      0.0 MiB                                   if (self.inputs['useDegree']):
   129                                                                 dihedrals_val[k, fNo] -= 180.0
   130     90.7 MiB      0.0 MiB                   logger.debug(str((bonds_val.shape, type(bonds_val), bonds_val)))
   131     90.7 MiB      0.0 MiB                   if block_id==0:
   132     71.9 MiB    -18.8 MiB                       logger.debug("trying to create nc file for bonds")
   133     71.9 MiB      0.0 MiB                       trjBAT = trajIO.trjNetCdfBAT(self.trajOutFile, n_atom, n_atom-1,n_atom-2,n_atom-3, self.inputs['roots'], pseudo_bonds=pseudo_bonds)
   134     72.3 MiB      0.4 MiB                       trjBAT.create_dataset("0O.lig.internal from md2accent")
   135                             
   136     90.7 MiB     18.5 MiB                   frames_indices = np.arange(block_start+1, block_end+1, dtype=np.int32)
   137     90.7 MiB      0.0 MiB                   logger.debug("Writing BAT trajectory...\n")
   138     90.7 MiB      0.0 MiB                   t_bonds_val = np.transpose(bonds_val)
   139     90.7 MiB      0.0 MiB                   t_angles_val = np.transpose(angles_val)
   140     90.7 MiB      0.0 MiB                   t_dihedrals_val = np.transpose(dihedrals_val)
   141                                             #frm_o, frm_n = trjBAT.append_frames(frames_indices, t_bonds_val, t_angles_val, t_dihedrals_val)
   142                                             #logger.debug(str("%d frames appended to file successfully\n" % (frm_n - frm_o)))
   143     90.7 MiB      0.0 MiB                   del frames_indices
   144     90.7 MiB      0.0 MiB                   del t_bonds_val
   145     90.7 MiB      0.0 MiB                   del t_angles_val
   146     90.7 MiB      0.0 MiB                   del t_dihedrals_val
   147     90.7 MiB      0.0 MiB                   del bonds_val
   148     90.7 MiB      0.0 MiB                   del angles_val
   149     90.7 MiB      0.0 MiB                   del dihedrals_val
   150     90.7 MiB      0.0 MiB                   gc.collect()
   151                                         else:
   152                                             logger.critical("Exception: There are no frames to process..")
   153                                             raise Exception("There are no frames to process..")
   154     90.7 MiB      0.0 MiB               traj = None
   155     90.7 MiB      0.0 MiB           logger.debug("Processing input trajectory successful...")
   156     90.7 MiB      0.0 MiB           return(True)

2 个答案:

答案 0 :(得分:0)

根据我的经验,使用C或类似代码编写的外部库的垃圾收集可能非常困难(在您的情况下为numpy)。

但是,请考虑使用标准库中包含的gc模块。 (gc =垃圾回收)

然后你可以尝试以下方法:

import gc
...
del frames_indices
gc.collect()

有关进一步调试,请查看以下内容:

答案 1 :(得分:0)

解决上述问题:我试图简要介绍代码,使代码的核心结构保持相似,如下所示,以便于跟进:

# In[1]:

import numpy as np
import scipy as sp
import pytraj as pt
import pandas as pnd
from memory_profiler import profile


# In[2]:

def read_tree_as_dataframe(filename, pdbfile, sel="@H=", header=True, skipTopNlines=0):
    """
        returns a pandas dataframe, where columns form BAT residue memberships
        number of hydrogens involved in bond/angle/torsion
        index of bond/angle/torsion (1-based)

        filename: filename from which tree will be read
        pdbfile: filename of corresponding pdb
        header: True::read tree heads from file, False::give heads as V??

    """
    data = {}
    with open(filename, "r") as f:        
        heads = []
        for ri, row in enumerate(f.readlines()):
            if ri < skipTopNlines:
                pass
            elif ri == skipTopNlines:
                if header:
                    for k in row.split():
                        data[k.strip()] = []
                        heads.append(k.strip())
                else:
                    for i, v in enumerate(row.split()):
                        data['V'+str(i+1)] = [v.strip()]
                        heads.append('V'+str(i+1))
            else:
                for i, c in enumerate(row.split()):
                    if heads[i] == 'tor_type':
                        data[heads[i]].append(c.strip())
                    elif heads[i] == 'is_bb':
                        val = True if c.strip().upper() == 'TRUE' else False
                        data[heads[i]].append(c.strip())
                    else:
                        data[heads[i]].append(int(c.strip()))
    data_len = len(data['tor_type'])
    import numpy
    for k in data.keys():
        data[k] = numpy.asarray(data[k])
    data['bnd_idx'] = numpy.zeros(data_len, dtype=numpy.int)
    data['ang_idx'] = numpy.zeros(data_len, dtype=numpy.int)
    data['tor_idx'] = numpy.zeros(data_len, dtype=numpy.int)
    bnd_idx = 0
    ang_idx = 0
    tor_idx = 0
    for i in range(data_len):
        if data['a2'][i] != -1:
            bnd_idx += 1
            data['bnd_idx'][i] = bnd_idx
        if data['a2'][i] != -1 and data['a3'][i] != -1:
            ang_idx += 1
            data['ang_idx'][i] = ang_idx
        if data['a2'][i] != -1 and data['a3'][i] != -1 and data['a4'][i] != -1:
            tor_idx += 1
            data['tor_idx'][i] = tor_idx
    data['bnd_Sel'] = numpy.zeros(data_len, dtype=numpy.int)
    data['ang_Sel'] = numpy.zeros(data_len, dtype=numpy.int)
    data['tor_Sel'] = numpy.zeros(data_len, dtype=numpy.int)

    import pandas as pd
    import pytraj as pt
    df_tree = pd.DataFrame.from_dict(data)
    pdb = pt.load(pdbfile)
    H_indices = pdb.top.select(sel)
    for i in range(df_tree.shape[0]):
        # Get selected atoms # in bond
        if df_tree.loc[i,'a2'] != -1:                           
            if df_tree.loc[i,'a2']-1 in H_indices:
                df_tree.loc[i,'bnd_Sel'] = df_tree.loc[i,'bnd_Sel'] + 1
            if df_tree.loc[i,'a1']-1 in H_indices: 
                df_tree.loc[i,'bnd_Sel'] = df_tree.loc[i,'bnd_Sel'] + 1
        # Get selected atoms # in angle
        if not (df_tree.loc[i,'a2'] == -1 or df_tree.loc[i,'a3'] == -1):                           
            if df_tree.loc[i,'a3']-1 in H_indices:
                df_tree.loc[i,'ang_Sel'] = df_tree.loc[i,'ang_Sel'] + 1
            if df_tree.loc[i,'a1']-1 in H_indices: 
                df_tree.loc[i,'ang_Sel'] = df_tree.loc[i,'ang_Sel'] + 1
        # Get selected atoms # in torsion
        if not (df_tree.loc[i,'a2'] == -1 or df_tree.loc[i,'a3'] == -1 or df_tree.loc[i,'a4'] == -1):                           
            if df_tree.loc[i,'a1']-1 in H_indices:
                df_tree.loc[i,'tor_Sel'] = df_tree.loc[i,'tor_Sel'] + 1
            if df_tree.loc[i,'a2']-1 in H_indices: 
                df_tree.loc[i,'tor_Sel'] = df_tree.loc[i,'tor_Sel'] + 1
            if df_tree.loc[i,'a3']-1 in H_indices: 
                df_tree.loc[i,'tor_Sel'] = df_tree.loc[i,'tor_Sel'] + 1
            if df_tree.loc[i,'a3']-1 in H_indices: 
                df_tree.loc[i,'tor_Sel'] = df_tree.loc[i,'tor_Sel'] + 1

    return(df_tree)


# In[3]:

df_tree = read_tree_as_dataframe('INR/INR.DFS.tree', 'INR/INR.pdb')

def get_bonds(tree):
    bonds_atom_indices  = []
    df1 = tree[['a1', 'a2']]
    for index, row in df1.iterrows():
        if row['a2'] != -1:
            bonds_atom_indices.append([row['a1'] -1, row['a2'] -1])
    #print(df1)
    print(bonds_atom_indices)
    return(bonds_atom_indices)


# In[6]:

bnd_list = get_bonds(df_tree)


# In[7]:

traj = pt.iterload(['INR/0O.lig_b.cr9-20.mdcrd.nc'], 'INR/INR.lig.gas.leap.prmtop', frame_slice=[(0, 3000000)])


# In[8]:
import gc

@profile
def dummy(chunk_sz, bnd_list):
    print("inside dummy..")
    #return np.reshape(np.zeros(chunk_sz * len(bnd_list)), (32, 60000)) 

@profile
def process_traj(traj, bnd_list, chunk_sz=60000):
    chunk_id = 0 
    print(len(bnd_list))
    for chunk in traj.iterchunk(chunk_sz, start=0, stop=-1):            
        chunk_end =  (chunk_id + 1) * chunk_sz if (chunk_id + 1) * chunk_sz < traj.n_frames else traj.n_frames       
        print("block stast, end: ", chunk_id * chunk_sz, chunk_end)
        if chunk_end - chunk_id * chunk_sz > 0:
            #bonds_val = np.reshape(np.zeros(chunk_sz * len(bnd_list)), (32, 60000)) 
            bonds_val = pt.distance(chunk, bnd_list, dtype='ndarray')
            dummy(chunk_sz, bnd_list)
            #bonds_val = dummy(chunk_sz, bnd_list)
            print(bonds_val.shape)
            del bonds_val
        chunk_id += 1
        gc.collect()




# In[10]:
process_traj(traj, bnd_list)


#get_ipython().magic(u'mprun -f dummy ')

并向使用pytraj的图书馆的主要作者寻求帮助。感谢他,discussion with him: see here让我发现了cython中使用的库pytraj中的错误。使用memoryviewcython.array的位置导致内存泄漏python2.7.13,而不是Matt Graham指出的python3 here

感谢linusg我也不能投票给他答案,因为我在这里没有15个声望点。