查找图像的轮廓Python OpenCV

时间:2017-01-03 05:55:38

标签: python opencv opencv-contour

# import the necessary packages
import decimal
import imutils
import cv2
import numpy as np
import matplotlib.pyplot as plt

# load the image, convert it to grayscale, and blur it slightly
image = cv2.imread("hand.jpg",0)

# threshold the image, then perform a series of erosions +
# dilations to remove any small regions of noise
thresh = cv2.threshold(image, 45, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.erode(thresh, None, iterations=2)
thresh = cv2.dilate(thresh, None, iterations=2)

# find contours in thresholded image, then grab the largest one
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
    cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
c = max(cnts, key=cv2.contourArea)
size = len(c);

refer_point = (207,130)

data = np.genfromtxt("data.txt", delimiter=',')

X = data[:,][:,0]

Y = data[:,][:,1]

for i in range(0,size):
    dist1= (((abs(207-X))**2)+((abs(130-Y))**2))**(1.0/2.0)

dist3 = round(dist1,2)
print dist3

plt.plot([dist3])

plt.show()

我正在处理上面的代码。代码执行得很完美,但图像的轮廓点完全错误。我在绘制图表后观察到了这个错误。在这个问题上帮助我。

1 个答案:

答案 0 :(得分:0)

1)如果没有为侵蚀和扩张指定内核,则图像不会改变。尝试使用内核。

kernel = np.ones((3,3),np.uint8)
thresh = cv2.erode(thresh, kernel, iterations=1)
thresh = cv2.dilate(thresh, kernel, iterations=1)

2)cnts包含找到的轮廓上的点((x,y)元组)。 size只是该轮廓上的点数。你获得它的大小并且不处理这些点,而是你读取一个数据文件并绘制完全不同的东西。要正确查看轮廓,请在findContours之后尝试以下操作:

# Load the image in color
image = cv2.imread("hand.jpg",cv2.IMREAD_COLOR)
# Draw the contours
cv2.drawContours(image, cnts, -1, (0,255,0), 3)
# Show the image with the contours
cv2.imshow("contours",image)

然后尝试将您的数据文件与轮廓点相关联。