pcaRasters
$call
rasterPCA(img = predictors)
$model
Call:
princomp(cor = spca, covmat = covMat[[1]])
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
498.96308248 356.19955279 166.82560362 79.75533403 28.30786958 18.01329729 11.05097697 5.90091966 4.85153037
Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 Comp.18
3.96912826 2.92429575 2.32486057 1.74476578 1.37242353 0.99700591 0.69100295 0.52470761 0.38599513
Comp.19 Comp.20 Comp.21 Comp.22 Comp.23
0.30199746 0.12861497 0.05112695 0.01751713 0.00000000
23 variables and 1034761 observations.
$map
class : RasterBrick
dimensions : 959, 1079, 1034761, 23 (nrow, ncol, ncell, nlayers)
resolution : 0.008333334, 0.008333334 (x, y)
extent : 24.99168, 33.98334, -23.00833, -15.01666 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +ellps=WGS84 +no_defs
data source : in memory
names : PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10, PC11, PC12, PC13, PC14, PC15, ...
min values : -1.525414e+03, -8.294717e+02, -1.597420e+03, -2.924969e+02, -4.018654e+02, -9.054122e+01, -4.005998e+01, -1.802074e+01, -2.699063e+01, -2.808965e+01, -1.337488e+01, -1.268085e+01, -1.224565e+01, -1.060565e+01, -4.378304e+00, ...
max values : 1.589643e+03, 1.964028e+03, 3.989713e+02, 3.699300e+02, 1.310118e+02, 7.833018e+01, 6.450310e+01, 2.629923e+01, 3.463626e+01, 2.732504e+01, 1.044373e+01, 1.601244e+01, 3.073991e+01, 5.426831e+00, 7.680870e+00, ...
答案 0 :(得分:0)
#sample data
data(rlogo)
ggRGB(rlogo, 1,2,3)
pcaRasters <- rasterPCA(rlogo)
访问值
getValues(pcaRasters$map)
PC1 PC2 PC3
[1,] -118.27810276 -4.054375764 0.726071167
[2,] -118.27810276 -4.054375764 0.726071167
[3,] -118.27810276 -4.054375764 0.726071167
绘制栅格:
plot(pcaRasters$map)
保存到磁盘:
writeRaster(pcaRasters$map, "filename.tif")