我有一个包含double类型的csv文件。当我加载到数据帧时,我收到此消息告诉我类型字符串是java.lang.String不能强制转换为java.lang.Double虽然我的数据是数字。如何从这个包含double type的csv文件中获取数据帧。我应该修改我的代码。
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{ArrayType, DoubleType}
import org.apache.spark.sql.functions.split
import scala.collection.mutable._
object Example extends App {
val spark = SparkSession.builder.master("local").appName("my-spark-app").getOrCreate()
val data=spark.read.csv("C://lpsa.data").toDF("col1","col2","col3","col4","col5","col6","col7","col8","col9")
val data2=data.select("col2","col3","col4","col5","col6","col7")
我可以将数据框中的每一行转换为double类型?感谢
答案 0 :(得分:6)
将select
与cast
:
import org.apache.spark.sql.functions.col
data.select(Seq("col2", "col3", "col4", "col5", "col6", "col7").map(
c => col(c).cast("double")
): _*)
或将架构传递给读者:
定义架构:
import org.apache.spark.sql.types._
val cols = Seq(
"col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9"
)
val doubleCols = Set("col2", "col3", "col4", "col5", "col6", "col7")
val schema = StructType(cols.map(
c => StructField(c, if (doubleCols contains c) DoubleType else StringType)
))
并将其用作schema
方法
spark.read.schema(schema).csv(path)
也可以使用模式推理:
spark.read.option("inferSchema", "true").csv(path)
但它要贵得多。
答案 1 :(得分:1)
我相信在阅读csv文件时使用spark inferSchema
选项会派上用场。下面是自动检测列为double类型的代码:
val data = spark.read
.format("csv")
.option("header", "false")
.option("inferSchema", "true")
.load("C://lpsa.data").toDF()
Note: I am using spark version 2.2.0