创建一个与cifar-10数据集格式相同的数据集

时间:2016-12-31 23:08:59

标签: python machine-learning tensorflow deep-learning supervised-learning

我想创建一个数据集,其格式与要与Tensorflow一起使用的cifar-10数据集相同。它应该有图像和标签。基本上,我希望能够采用cifar-10代码,但不同的图像和标签,并运行该代码。我还没有找到任何有关如何在线进行此操作的信息,对机器学习来说还是全新的。

2 个答案:

答案 0 :(得分:1)

我也必须这样做,并制作了一系列函数来将图像和文本文件格式化为张量流的可读格式。以下是我在一个名为images(我使用glob来迭代它们)的文件夹中使用一组图像所做的修改,以及一个包含编码图像信息的文本文件(我有一系列数字用于每个图像,其中描述用户在拍摄每张图像时指示机器人的数字)。我创建了一个生成小批量的函数,并创建了一个训练和测试数据集。我还将与每个图像相关联的数字转换为适合的单热矢量(如果需要,可以使用它,但可能没用)。

#!/usr/bin/python
import cv2
import numpy as np
import tensorflow as tf
import glob
import re
import random


# Parameters
learning_rate = 0.001
training_iters = 20000
batch_size = 120
display_step = 10

# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 1 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units

image = np.reshape(np.asarray(mnist.train.images[0]), (28,28))

#Process Images

cv_img = []
for img in glob.glob("./images/*.jpeg"):
    n  = cv2.cvtColor(cv2.resize(cv2.imread(img), (28,28)), cv2.COLOR_BGR2GRAY)
    n = np.asarray(n)
    n = np.reshape(n, n_input)
    cv_img.append(n)

#Process File for angle, here we read the text line by line and make a list
with open("./images/allinfo.txt") as f:
    content = f.readlines()

#Initialize arrays to unpack data file
angle = []
image_number = []


#Iterate through the text list and split each one by the comma separating the values. 
#Turn the text into floats for use in the network
for i in range(len(content)):
    content[i] = content[i][:-1].split(',')
    image_number.append(float(content[i][1]))
    angle.append(float(content[i][7]))

#Divide both angle and image number into test and train data sets
angle = np.atleast_2d(angle).T


##Encode angle into 10 classes (it ranges -1 to 1)
for i in range(len(angle)):
    angle[i] = random.uniform(-1,1)
    angle[i] = int((angle[i]+1.0)*n_classes/2.)


#Create a one-hot version of angle
angle_one_hot = np.zeros((len(angle),n_classes))

for c in range(len(angle)):
    one_hot = np.zeros(n_classes)
    one_hot[int(angle[c])] = 1
    angle_one_hot[c] = one_hot


image_number = np.atleast_2d(image_number).T
test_data =  np.hstack((image_number, angle))
#print test_data
train_percent = .8
train_number = int(len(test_data)*train_percent)
train_data = np.zeros((train_number, 2))
for i in range(train_number):
    rand = random.randrange(0,len(test_data))
    train_data[i] = test_data[rand]
    test_data = np.delete(test_data, rand, 0)
test_data_images = test_data[:,0]
test_data_angles = test_data[:,1]
train_data_images, train_data_angles = train_data[:,0], train_data[:,1]



def gen_batch(angles, images, batch_size, image_array=cv_img):
    indices = random.sample(xrange(0,len(images)), batch_size)
    batch_images = []
    batch_angles = []
 #   print angles
    for i in range(batch_size):
        batch_images.append(image_array[int(images[indices[i]])][:])
        batch_angles.append(angles[indices[i]])
    batch_images = np.asarray(batch_images)
    batch_angles = np.asarray(batch_angles)

    return batch_images, batch_angles


# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32)
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)

# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation
    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
    x = tf.nn.bias_add(x, b)
    return tf.nn.relu(x)


def maxpool2d(x, k=2):
    # MaxPool2D wrapper
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                          padding='SAME')


# Create model
def conv_net(x, weights, biases, dropout):
    # Reshape input picture
    x = tf.reshape(x, shape=[-1, 28, 28, 1])

    # Convolution Layer
    conv1 = conv2d(x, weights['wc1'], biases['bc1'])
    # Max Pooling (down-sampling)
    conv1 = maxpool2d(conv1, k=2)

    # Convolution Layer
    conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
    # Max Pooling (down-sampling)
    conv2 = maxpool2d(conv2, k=2)

    # Fully connected layer
    # Reshape conv2 output to fit fully connected layer input
    fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    # Apply Dropout
    fc1 = tf.nn.dropout(fc1, dropout)

    # Output, class prediction
    out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
    return out

# Store layers weight & bias
weights = {
    # 5x5 conv, 1 input, 32 outputs
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
    # 5x5 conv, 32 inputs, 64 outputs
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
    # fully connected, 7*7*64 inputs, 1024 outputs
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
    # 1024 inputs, 10 outputs (class prediction)
    'out': tf.Variable(tf.random_normal([1024, n_classes]))
}

biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

# Construct model
pred = conv_net(x, weights, biases, keep_prob)

# Define loss and optimizer
#cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
cost = tf.reduce_mean(pred)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize((pred-y)**2)

# Evaluate model
correct_pred = y
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.initialize_all_variables()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    step = 1
    print(y)
    # Keep training until reach max iterations
    while step * batch_size < training_iters:
        batch_x, batch_y = gen_batch(train_data_angles, train_data_images, batch_size)
        #cv2.imshow('trash', batch_x[0,:].reshape((28,28)))
        #cv2.waitKey(0)
        #print(batch_y)
        # Run optimization op (backprop)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                       keep_prob: dropout})
        if step % display_step == 0:
            # Calculate batch loss and accuracy
            loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                              y: batch_y,
                                                              keep_prob: 1.})
            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
                  "{:.6f}".format(loss) + ", Training Accuracy= " + \
                  "{:.5f}".format(acc)
        step += 1
    print "Optimization Finished!"

    # Calculate accuracy for all test images
    img, lbls = gen_batch(test_data_angles, test_data_images, len(test_data_angles))
    print "Testing Accuracy:", \
        sess.run(accuracy, feed_dict={x: img,
                                      y: lbls,
                                      keep_prob: 1.})

这不是一个好的nn(数据没有标准化,学习率是两个高,训练精度尚未编程),但图像处理代码有效。

希望这有帮助!

答案 1 :(得分:0)

CIFAR-10是更大dataset的子集。您需要的图像是缩放的彩色图像,其高度和宽度为32像素,带有三个颜色通道。实现目标的一种方法是首先从CIFAR-100数据集中选择10个不同的标签,保存并运行现有代码。例如,您可能想要选择车辆1和车辆2超类。这将为您提供6000个标记图像,包括:自行车,公共汽车,摩托车,皮卡车,火车,割草机,火箭,有轨电车,坦克和拖拉机类。然后,您可以构建车辆类型的预测器 - 这是一种非常酷的方式来更熟悉机器学习。 : - )

在cifar10.py文​​件中,您可以看到用于从“http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz”下载的培训文件的目录。无需更改任何代码,您只需使用您的数据更新这些夸大的培训文件即可。查看/ tmp / cifar10_data / cifar-10-batches-bin目录。例如。 batches.meta.txt文件包含“二进制版本”部分所述的标签:https://www.cs.toronto.edu/~kriz/cifar.html