我正在使用转移学习,使用预先训练的ResNet50模型对CIFAR-10数据集进行分类。但是问题在于此模型接受的最小大小为(197,197),而CIFAR-10数据集的大小为(32,32)。因此,我使用此代码将模型的大小调整为(200,200)
input_list = ['foo','bar','baz']
for i in range(-1,-len(input_list)-1,-1)
print(input_list[i])
是否有任何有效的方法来执行此操作,因为它会引起# Reshaping the training data
X_train_new = np.array([misc.imresize(X_train[i], (200, 200, 3)) for i in range(0, len(X_train))]).astype('float32')
# Preprocessing the data, so that it can be fed to the pre-trained ResNet50 model.
resnet_train_input = preprocess_input(X_train_new)
# Creating bottleneck features for the training data
train_features = model.predict(resnet_train_input)
# Saving the bottleneck features
np.savez('resnet_features_train', features=train_features)
升高。这是回溯:
()中的MemoryError跟踪(最近一次通话最近) 1#重塑训练数据 ----> 2 X_train_new = np.array([misc.imresize(X_train [i],(200,200,3))for i in range(0,len(X_train))])。astype('float32' ) 3 4#预处理数据,以便可以将其输入经过预先训练的ResNet50模型。 5 resnet_train_input =预处理输入(X_train_new)
MemoryError: