我尝试使用cuda将图像与图像分开。程序输出与通道对应的三个图像。我得到了正确的输出,但它只显示了部分图像通道。
这是我的代码:
// main.cpp
void separateHelper(const uchar4 *d_rgbaImage, uchar4 *d_channel, const int numRows, const int numCols,int channel);
std::string file_name = "test.jpg";
cv::Mat image, rgbaImage;
int numRows(){ return rgbaImage.rows; };
int numCols(){ return rgbaImage.cols; };
int main(){
uchar4 *h_rgbaImage, *h_red, *h_green, *h_blue;
uchar4 *d_rgbaImage, *d_red, *d_green, *d_blue;
cv::Mat red, green, blue;
cv::Mat redChannel, greenChannel, blueChannel;
image = cv::imread(file_name.c_str(),CV_LOAD_IMAGE_COLOR);
if (image.empty()){
std::cerr << "error loading image";
system("pause");
exit(1);
}
cv::cvtColor(image,rgbaImage, CV_BGR2RGBA);
//create space for output
red.create(numRows(), numCols(), CV_8UC3);
cv::cvtColor(red, redChannel, CV_BGRA2RGBA);
green.create(numRows(), numCols(), CV_8UC3);
cv::cvtColor(green, greenChannel, CV_BGRA2RGBA);
blue.create(numRows(), numCols(), CV_8UC3);
cv::cvtColor(blue, blueChannel, CV_BGRA2RGBA);
h_rgbaImage = (uchar4*)rgbaImage.ptr<unsigned char>(0);
h_red = (uchar4*)redChannel.ptr<unsigned char>(0);
h_green = (uchar4*)greenChannel.ptr<unsigned char>(0);
h_blue = (uchar4*)blueChannel.ptr<unsigned char>(0);
//allocate memory on device
const int numPixels = numCols()*numRows();
checkCudaErrors(cudaMalloc((void**)&d_rgbaImage,sizeof(uchar4) * (numPixels + 500)));
checkCudaErrors(cudaMalloc((void**)&d_red, sizeof(uchar4) * (numPixels + 500)));
checkCudaErrors(cudaMalloc((void**)&d_green, sizeof(uchar4) * (numPixels + 500)));
checkCudaErrors(cudaMalloc((void**)&d_blue, sizeof(uchar4) * (numPixels + 500)));
//copy image from host to device
checkCudaErrors(cudaMemcpy(d_rgbaImage, h_rgbaImage, sizeof(uchar4) * numPixels, cudaMemcpyHostToDevice));
//call helper function of kernel
separateHelper(d_rgbaImage, d_red, numRows(), numCols(),1);
separateHelper(d_rgbaImage, d_green, numRows(), numCols(),2);
separateHelper(d_rgbaImage, d_blue, numRows(), numCols(),3);
//copy results back to host
checkCudaErrors(cudaMemcpy(h_red, d_red, sizeof(uchar4) * numPixels, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaMemcpy(h_green, d_green, sizeof(uchar4) * numPixels, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaMemcpy(h_blue, d_blue, sizeof(uchar4) * numPixels, cudaMemcpyDeviceToHost));
//change RGBA to BGR
cv::cvtColor(redChannel,red,CV_RGBA2BGR);
cv::cvtColor(greenChannel,green,CV_RGBA2BGR);
cv::cvtColor(blueChannel,blue,CV_RGBA2BGR);
cv::namedWindow("RED", CV_WINDOW_AUTOSIZE);
cv::imshow("RED", red);
cv::namedWindow("GREEN", CV_WINDOW_AUTOSIZE);
cv::imshow("GREEN", green);
cv::namedWindow("BLUE", CV_WINDOW_AUTOSIZE);
cv::imshow("BLUE", blue);
cv::waitKey(0);
cudaFree(d_rgbaImage);
cudaFree(d_red);
cudaFree(d_green);
cudaFree(d_blue);
return 0;
}
这是我的GPU代码:
// kernel.cu
__global__ void separateChannels(const uchar4* d_rgbaImage,uchar4* d_channel, int numRows, int numCols, int channel){
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if (x >= numCols || y >= numRows)
return;
int index = numRows * y + x;
if (channel == 1){
d_channel[index].x = d_rgbaImage[index].x;
d_channel[index].y = 0;
d_channel[index].z = 0;
}
else if (channel == 2){
d_channel[index].x = 0;
d_channel[index].y = d_rgbaImage[index].y;
d_channel[index].z = 0;
}
else if (channel == 3){
d_channel[index].x = 0;
d_channel[index].y = 0;
d_channel[index].z = d_rgbaImage[index].z;
}
d_channel[index].w = 255;
}
void separateHelper(const uchar4 *d_rgbaImage, uchar4 *d_channel,
const int numRows, const int numCols, int channel){
//set grid and block size
int blockWidth = 32;
const dim3 blockSize(blockWidth, blockWidth, 1);
const dim3 gridSize(((numCols)/32 + 1 ), ((numRows)/32 + 1), 1);
//call kernel
separateChannels <<<gridSize, blockSize >>>(d_rgbaImage, d_channel, numRows, numCols, channel);
cudaDeviceSynchronize();
checkCudaErrors(cudaGetLastError());
}
错误:只有部分图像(红色,绿色和蓝色通道图像)显示为输出。
答案 0 :(得分:1)
我认为它没有分配足够的线程来执行任务,或者你混淆了x和y坐标。通常,y方向条带分配有列和具有行的x方向条带。每行包含numColumns
个元素,每列包含numRows
个元素。分配线程时,遵循该逻辑:
int blockWidth = 32;
const dim3 blockSize(blockWidth, blockWidth, 1);
const dim3 gridSize(((numCols)/32 + 1 ), ((numRows)/32 + 1), 1);
但是当你计算索引时,你却没有。不应该
int index = numRows * y + x;
是:
int index = numColumns * y + x;
?
答案 1 :(得分:0)
由于网格尺寸错误,您仅获得一部分图像通道。您需要在此处替换numCols和numRows:
const dim3 gridSize(((numCols)/32 + 1 ), ((numRows)/32 + 1), 1);
赞:
const dim3 gridSize(((numRows)/32 + 1 ), ((numCols)/32 + 1), 1);
并且无需在此处添加额外的500:
checkCudaErrors(cudaMalloc((void**)&d_blue, sizeof(uchar4) * (numPixels + 500)));
答案 2 :(得分:-1)
我很激动,我刚刚解决了我的问题!
我的情况是,C ++代码结果是正确的,但GPU代码结果只显示完整图像的四分之一。 那是因为当cudaMemcpy从设备到主机时,我设置了错误的参数&#39; size&#39;。
// cudaMemcpy(h_result,d_result,imagesize,cudaMemcpyDeviceToHost);
// cudaMemcpy(h_result,d_result,imagesize * sizeof(float),cudaMemcpyDeviceToHost);
sizeof(float)正好是4个字节!所以我只有四分之一的完整图像。
记住乘以sizeof(数据类型)。
希望我的回答有用:)