使用GCC编译我总是从以下代码中得到错误。我相信这是一个编译器错误,但有人可能会更清楚。
#include <iostream>
template< class T >
class has_apply {
typedef char yes[1];
typedef char no[2];
template< class U, U u >
struct binder {};
template< class U, unsigned n >
static yes& test( U*,
binder< void (U::*) ( const double& ),
&U::template apply< n >
>* = 0
);
template< class U, unsigned n >
static no& test( ... );
public:
static const bool result =
( sizeof( yes ) == sizeof( test< T, 0u >( (T*)(0) ) ) );
};
class A {
public:
template< unsigned n >
void apply( const double& );
};
int main()
{
std::cout << std::boolalpha << has_apply< A >::result << '\n';
return( 0 );
}
答案 0 :(得分:1)
我无法理解为什么,但我能够通过不取出U *并通过拉出活页夹类型的声明来使代码工作:
template< class T >
class has_apply {
public:
typedef char yes[1];
typedef char no[2];
template< class U, U u >
struct binder {};
typedef binder< void (T::*)(const double&), &T::template apply<0u> > b;
template < typename V, unsigned n >
struct declare
{
typedef binder< void (V::*)(const double&), &V::template apply<n> > type;
};
template< typename U, unsigned n >
static yes& test( typename declare<U,n>::type * );
template< class U, unsigned n >
static no& test( ... );
static const bool result =
( sizeof( yes ) == sizeof( test< T, 0u >( 0 ) ) );
};
你可以通过从函数中删除unsigned参数并在'declare'中的typedef中粘贴0u来实际简化这一点。
同样,我无法解释为什么这个中间元函数是必要的,但它是必需的,上面的工作在MSVC ++ 2010中
答案 1 :(得分:1)
Andy Venikov在[comp.lang.c ++。moderated]中的回答(我只是因为google-foo(他是他,我作弊)而受到赞扬):
http://groups.google.com/group/comp.lang.c++.moderated/msg/93017cf706e08c9e
答案 2 :(得分:0)
apply
称为模板和非模板:
#include <iostream>
template< class T >
class has_apply {
template< class U, U u >
struct binder {};
template< class U >
static double test(
U*,
binder<
void (U::*) ( const double& ),
//&U::template apply< 0 >
&U::apply
>* = 0
);
public:
static binder<
void (T::*) ( const double& ),
&T::template apply< 0 >
>* dummy();
static const bool result = sizeof( test( (T*)(0), dummy() ) );
};
class A {
public:
// template< unsigned n >
void apply( const double& );
};
int main()
{
std::cout << std::boolalpha << has_apply< A >::result << '\n';
return( 0 );
}
对g ++的影响:
C:\test> g++ -std=c++98 y.cpp y.cpp: In instantiation of 'has_apply': y.cpp:38: instantiated from here y.cpp:24: internal compiler error: in instantiate_type, at cp/class.c:6303 Please submit a full bug report, with preprocessed source if appropriate. See for instructions. C:\test> _
他他......
PS:我很乐意将其发布为“评论”,因为它不是“答案”。
答案 3 :(得分:0)
这不是为什么它不起作用的答案。然而,通过网络进行研究,我发现了一些例子,并最终得到了以下代码,这可能比我一直在尝试的更为重要。
我试图检测特定的成员函数签名,但下面的代码超出了并检测给定的调用是否可行,无论签名是什么。希望评论会有所帮助。
#include <iostream>
template< class T >
class has_apply {
class yes { char c; };
class no { yes c[2]; };
struct mixin {
void apply( void );
};
// Calling derived::apply is only non-ambiguous if
// T::apply does not exist, cf. 10.2.2.
template< class U> struct derived : public U, public mixin {};
// The following template will help on deduction based on this fact.
// If U is type void (mixin::*) (void) then the template can be
// instantiated with u = &derived< U >::apply if and only if T::apply
// does not exist.
template< class U, U u >
class binder {};
// Therefore, the following template function is only selected if there
// is no T::apply:
template< class U >
static no deduce( U, binder< void (mixin::*) (void), &derived< U >::apply >* = 0 );
// Selected otherwise.
static yes deduce( ... );
// Provides an T object:
static T T_obj( void );
public:
static const bool result = ( sizeof( yes ) == sizeof( deduce( T_obj() ) ) );
};
namespace aux {
// Class to represent the void type as a "true" type.
class void_type {};
// deduce() some lines below will give us the right answer based on
// the return type of T::apply<>, but if it is void we cannot use a
// call to T::apply as an argument to deduce. In fact, the only
// function in c++ that can take such an argument is operator,() with
// its default behaviour and if an overload is not well formed it
// falls back to default.
template< class T >
T& operator,( const T&, void_type ) {};
// Copies the constness of T into U. This will be required in order
// to not get false positives when no const member is defined.
template< class T, class U >
struct copy_constness {
typedef U result;
};
template< class T, class U >
struct copy_constness< const T, U > {
typedef const U result;
};
}
template< class T >
class has_correct_apply{
class yes { char c; };
class no { yes c[2]; };
// We assume has_apply< T >::result is true so the following class
// is well declared. It is declared in a way such that a call to
// derived::apply< n >() is always possible. This will be necessary
// later.
struct derived : public T {
using T::apply; // possible iff has_apply< T >::result == true
// This template function will be selected if the function call
// we wish is otherwise invalid.
template< unsigned n >
static no apply( ... );
};
// const_correct_derived will have the same constness than T.
typedef typename aux::copy_constness< T, derived >::result const_correct_derived;
// Provides a const correct derived object.
static const_correct_derived derived_obj( void );
// Only possible call was derived::apply: call is impossible for signature:
static no deduce( no );
// Since te returned value of it will most likely be
// ignored in our code (void must be always [almost, see next]
// ignored anyway), we return yes from this:
static yes deduce( ... );
// As we noticed, an overload of operator,() may make an exact match necessary.
// If we want this we could simply have used "no" instead of "yes" above and:
// static no deduce( aux::void_type );
public:
static const bool result = ( sizeof( yes ) == sizeof( deduce(
( derived_obj().template apply< 0u >( 0.0 ), aux::void_type() )
) ) );
// Note: Inteestingly enough, GCC does not detect an private subclass default
// constructor and so const_correct_derived() could be used instead of
// having a function derived_obj(), but I do not know if this behavoiur is
// standard or not.
};
struct C {
template< unsigned n >
int apply( double, unsigned m = 10 ) const;
private:
C();
};
struct D {
template< unsigned n >
int apply( const double& );
private:
D();
};
struct E : public C {
};
struct Without{};
#include "mp.h"
int main()
{
std::cout << has_apply< E >::result << '\n';
std::cout << has_correct_apply< const E >::result << '\n';
std::cout << has_correct_apply< const D >::result << '\n';
std::cout << has_correct_apply< D >::result << '\n';
// E e;
return( 0 );
}