神经网络代码解释

时间:2016-12-26 11:13:57

标签: matlab neural-network perceptron

以下是a blog中提供的简单Perceptron的实现。

input = [0 0; 0 1; 1 0; 1 1];
numIn = 4;
desired_out = [0;1;1;1];
bias = -1;
coeff = 0.7;
rand('state',sum(100*clock));
weights = -1*2.*rand(3,1);

iterations = 10;

for i = 1:iterations
     out = zeros(4,1);
     for j = 1:numIn
          y = bias*weights(1,1)+...
               input(j,1)*weights(2,1)+input(j,2)*weights(3,1);
          out(j) = 1/(1+exp(-y));
          delta = desired_out(j)-out(j);
          weights(1,1) = weights(1,1)+coeff*bias*delta;
          weights(2,1) = weights(2,1)+coeff*input(j,1)*delta;
          weights(3,1) = weights(3,1)+coeff*input(j,2)*delta;
     end
end

我有以下问题,

(1)哪一个是在这里训练数据?

(2)这里有哪一个测试数据?

(3)这里的标签是什么?

1 个答案:

答案 0 :(得分:1)

训练数据为[0 0; 0 1; 1 0;在另一个视图中,每一行都是一组训练数据,如下所示

    >> input

input =

 0     0
 0     1
 1     0
 1     1

和目标是

   desired_out =

 0
 1
 1
 1

请考虑 desired_out这是您的标签 .. 训练数据(输入)中的每一行都有二进制集{0,1}中的特定输出(标签)(因为这个例子)用于实现OR逻辑电路。

在matlab中你可以使用或运作如下进一步理解:

    >> or(0,0)

    ans =

        0

    >> or(1,0)

    ans =

        1

    >> or(0,1)

   ans =

       1

   >> or(1,1)

   ans =

       1

请注意,您的代码没有任何培训测试,此代码只是尝试获取感知器的权重和其他参数,但您可以通过一点点程序为您的代码添加训练测试

    NumDataTest  =  10 ;
    test=randi( [0 , 1] , [ NumDataTest , 2]) ...
       +(2*rand(NumDataTest,2)-1)/20;

所以测试数据将类似于下面的

     test =

    1.0048    1.0197
    0.0417    0.9864
   -0.0180    1.0358
    1.0052    1.0168
    1.0463    0.9881
    0.9787    0.0367
    0.9624   -0.0239
    0.0065    0.0404
    1.0085   -0.0109
   -0.0264    0.0429

对于测试此数据,您可以通过以下代码使用您自己的程序:

    for i=1:NumDataTest
        y = bias*weights(1,1)+test(i,1)*weights(2,1)+test(i,2)*weights(3,1);
        out(i) = 1/(1+exp(-y));
    end

最后:

     table(test(:,1),test(:,2),out,'VariableNames',{'input1' 'input2' 'output'})

输出

         input1       input2       output 
        _________    _________    ________

          1.0048       1.0197     0.99994
          0.041677      0.98637     0.97668
         -0.017968       1.0358     0.97527
          1.0052       1.0168     0.99994
          1.0463      0.98814     0.99995
          0.97875     0.036674      0.9741
          0.96238    -0.023861     0.95926
          0.0064527     0.040392    0.095577
          1.0085    -0.010895     0.97118
         -0.026367     0.042854    0.080808

代码部分:

    clc
    clear
    input = [0 0; 0 1; 1 0; 1 1];
    numIn = 4;
    desired_out = [0;1;1;1];
    bias = -1;
    coeff = 0.7;
    rand('state',sum(100*clock));
    weights = -1*2.*rand(3,1);

    iterations = 100;

    for i = 1:iterations
    out = zeros(4,1);
        for j = 1:numIn
           y = bias*weights(1,1)+input(j,1)*weights(2,1)+input(j,2)*weights (3,1);
           out(j) = 1/(1+exp(-y));
           delta = desired_out(j)-out(j);
           weights(1,1) = weights(1,1)+coeff*bias*delta;
           weights(2,1) = weights(2,1)+coeff*input(j,1)*delta;
           weights(3,1) = weights(3,1)+coeff*input(j,2)*delta;
        end
   end
   %% Test Section
   NumDataTest  =  10 ;
   test=randi( [0 , 1] , [ NumDataTest , 2]) ...
      +(2*rand(NumDataTest,2)-1)/20;
   for i=1:NumDataTest
       y = bias*weights(1,1)+test(i,1)*weights(2,1)+test(i,2)*weights(3,1);
       out(i) = 1/(1+exp(-y));
   end
    table(test(:,1),test(:,2),out,'VariableNames',{'input1' 'input2' 'output'})

我希望这会对我的英语有所帮助并对不起