试图解决这个问题。假设你有一个data.table:
export class LogicalId extends String {
constructor(value: string) {
if (!/somepattern/.exec(value) {
throw new ValidationError(...);
}
super(value);
}
}
我想将它转换为这样的
dt <- data.table (person=c('bob', 'bob', 'bob'),
door=c('front door', 'front door', 'front door'),
type=c('timeIn', 'timeIn', 'timeOut'),
time=c(
as.POSIXct('2016 12 02 06 05 01', format = '%Y %m %d %H %M %S'),
as.POSIXct('2016 12 02 06 05 02', format = '%Y %m %d %H %M %S'),
as.POSIXct('2016 12 02 06 05 03', format = '%Y %m %d %H %M %S') )
)
我似乎无法为dcast.data.table获取正确的语法。我试过了
person door timeIn timeOut
bob front door min(<date/time>) max(<date/time>)
会抛出错误:
聚合函数应采用向量输入并返回单个值(长度= 1)。
我也尝试过:
dcast.data.table(
dt, person + door ~ type,
value.var = 'time',
fun.aggregate = function(x) ifelse(type == 'timeIn', min(x), max(x))
)
但结果却抛弃了我的日期
dcast.data.table(dt, person + door ~ type, value.var = 'time')
任何建议将不胜感激。 TIA
答案 0 :(得分:7)
使用dcast
有多种方法可以达到预期效果。 jazzurro 的解决方案在重新整形结果之前进行聚合。这里的方法直接使用dcast
,但可能需要一些后处理。我们正在使用 jazzurro 的数据,这些数据经过调整以符合UTC
时区和data.table
的CRAN版本1.10.0。
ifelse
工作如Q中所述,
dcast(
dt, person + door ~ type,
value.var = 'time',
fun.aggregate = function(x) ifelse(type == 'timeIn', min(x), max(x))
)
返回错误消息。错误消息的全文包括使用fill
参数的提示。遗憾的是,ifelse()
不尊重POSIXct
类(有关详细信息,请参阅?ifelse
),因此需要执行此操作。
用
dcast(
dt, person + door ~ type,
value.var = 'time',
fun.aggregate = function(x)
lubridate::as_datetime(ifelse(type == 'timeIn', min(x), max(x))),
fill = 0
)
我们得到了
# person door timeIn timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:05
ifelse
ifelse
的帮助页面建议
(tmp <- yes; tmp[!test] <- no[!test]; tmp)
作为替代。遵循这个建议,
dcast(
dt, person + door ~ type,
value.var = 'time',
fun.aggregate = function(x) {
test <- type == "timeIn"; tmp <- min(x); tmp[!test] = max(x)[!test]; tmp
}
)
返回
# person door timeIn timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:05
请注意,fill
参数和强制转换为POSIXct
都不需要。
dcast
使用最新版本的dcast.data.table
,我们可以为fun.aggregate
提供一系列功能:
dcast(dt, person + door ~ type, value.var = 'time', fun = list(min, max))
返回
# person door time_min_timeIn time_min_timeOut time_max_timeIn time_max_timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:03 2016-12-02 07:06:02 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:03 2016-12-02 06:05:02 2016-12-02 06:05:05
我们可以删除不需要的列,并通过
重命名其他列dcast(dt, person + door ~ type, value.var = 'time', fun = list(min, max))[
, .(person, door, timeIn = time_min_timeIn, timeOut = time_max_timeOut)]
让我们
# person door timeIn timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:05
如上所述,我们正在使用 jazzurro 的数据
dt <- structure(list(person = c("bob", "bob", "bob", "bob", "ana",
"ana", "ana", "ana"), door = c("front door", "front door", "front door",
"front door", "front door", "front door", "front door", "front door"
), type = c("timeIn", "timeIn", "timeOut", "timeOut", "timeIn",
"timeIn", "timeOut", "timeOut"), time = structure(c(1480658701,
1480658702, 1480658703, 1480658705, 1480662361, 1480662362, 1480662363,
1480662365), class = c("POSIXct", "POSIXt"))), .Names = c("person",
"door", "type", "time"), row.names = c(NA, -8L), class = c("data.table",
"data.frame"))
但是将时区强制为UTC
。
使用
dt[, time := lubridate::with_tz(time, "UTC")]
我们有
dt
# person door type time
#1: bob front door timeIn 2016-12-02 06:05:01
#2: bob front door timeIn 2016-12-02 06:05:02
#3: bob front door timeOut 2016-12-02 06:05:03
#4: bob front door timeOut 2016-12-02 06:05:05
#5: ana front door timeIn 2016-12-02 07:06:01
#6: ana front door timeIn 2016-12-02 07:06:02
#7: ana front door timeOut 2016-12-02 07:06:03
#8: ana front door timeOut 2016-12-02 07:06:05
独立于当地时区。
答案 1 :(得分:6)
这是实现目标的一种方式。我修改了您的dt
并创建了以下数据集。对于每个人,我查找了timeIn
的最短时间和timeOut
的最长时间。然后,我将dcast()
应用于结果。
# person door type time
#1: bob front door timeIn 2016-12-02 06:05:01
#2: bob front door timeIn 2016-12-02 06:05:02
#3: bob front door timeOut 2016-12-02 06:05:03
#4: bob front door timeOut 2016-12-02 06:05:05
#5: ana front door timeIn 2016-12-02 07:06:01
#6: ana front door timeIn 2016-12-02 07:06:02
#7: ana front door timeOut 2016-12-02 07:06:03
#8: ana front door timeOut 2016-12-02 07:06:05
library(data.table)
dcast(
dt[, .SD[(type == "timeIn" & time == min(time))|(type == "timeOut" & time == max(time))], by = person],
person + door ~ type)
# person door timeIn timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:05
DATA
dt <- structure(list(person = c("bob", "bob", "bob", "bob", "ana",
"ana", "ana", "ana"), door = c("front door", "front door", "front door",
"front door", "front door", "front door", "front door", "front door"
), type = c("timeIn", "timeIn", "timeOut", "timeOut", "timeIn",
"timeIn", "timeOut", "timeOut"), time = structure(c(1480658701,
1480658702, 1480658703, 1480658705, 1480662361, 1480662362, 1480662363,
1480662365), class = c("POSIXct", "POSIXt"))), .Names = c("person",
"door", "type", "time"), row.names = c(NA, -8L), class = c("data.table",
"data.frame"))