我想将下面列出的文件解析成一个pandas数据帧,其中年份和月份作为日期时间索引,其余11列列入dataframe列。
STANDARDIZED NORTHERN HEMISPHERE TELECONNECTION INDICES (1981-2010 Clim)
column 1: Year (yy)
column 2: Month (mm)
column 3: North Atlantic Oscillation (NAO)
column 4: East Atlantic Pattern (EA)
column 5: West Pacific Pattern (WP)
column 6: EastPacific/ North Pacific Pattern (EP/NP)
column 7: Pacific/ North American Pattern (PNA)
column 8: East Atlantic/West Russia Pattern (EA/WR)
column 9: Scandinavia Pattern (SCA)
column 10: Tropical/ Northern Hemisphere Pattern (TNH)
column 11: Polar/ Eurasia Pattern (POL)
column 12: Pacific Transition Pattern (PT)
column 13: Explained Variance (%) of leading 10 modes
PATTERN VALUES ARE SET TO -99.9 FOR MONTHS IN WHICH THE PATTERN IS NOT A LEADING MODE
yyyy mm NAO EA WP EP/NP PNA EA/WR SCA TNH POL PT Expl. Var.
1950 1 0.56 -2.71 -1.69 0.91 -3.65 2.29 0.78 0.55 -0.71-99.90 86.0
1950 2 0.01 0.66 -1.36 -1.13 -1.69 -0.57 -0.94 -1.07 1.25-99.90 58.6
1950 3 -0.78 0.82 -0.38 -0.02 -0.06 -1.80 -0.22-99.90 0.78-99.90 54.3
1950 4 0.65 0.28 -0.50 -1.87 -0.23 -2.50 0.46-99.90 0.10-99.90 64.8
1950 5 -0.50 -0.51 0.23 -0.98 -0.40 1.41 0.28-99.90 0.55-99.90 49.6
我已经在文件中读到了文件名,使用下面的pandas命令:
df = pd.read_csv(filename, delim_whitespace=True, index_col=[0], parse_dates=[[0, 1]], skiprows=17)
输出片段:
NAO EA WP EP/NP PNA EA/WR SCA \
yyyy_mm
1950-01-01 0.56 -2.71 -1.69 0.91 -3.65 2.29 0.78
1950-02-01 0.01 0.66 -1.36 -1.13 -1.69 -0.57 -0.94
1950-03-01 -0.78 0.82 -0.38 -0.02 -0.06 -1.80 -0.22-99.90
1950-04-01 0.65 0.28 -0.50 -1.87 -0.23 -2.50 0.46-99.90
1950-05-01 -0.50 -0.51 0.23 -0.98 -0.40 1.41 0.28-99.90
虽然我能够正确解析大部分数据,但-99.90
数据值似乎不会与之前的值分隔,因此会被集中到前面的列中。我假设无论如何都会标记这些值,所以我很乐意从结果数据框中省略它们。
我使用了na_values
kwarg,但这没有效果。
如果有这个问题的内置解决方案,或者我是否需要在pandas解析前编写自定义文本解析器?如果需要自定义解析器,在pandas解析之前消除/替换-99.90
值的最直接方法是什么,以便正确解析生成的数据帧?
答案 0 :(得分:2)
手动读取标题并指定宽度有效:
with open(filename) as fobj:
for _ in range(17):
fobj.readline()
names = fobj.readline().split()
names = names[:-2] + [' '.join(names[-2:]) ]
fobj.readline()
widths = [4, 3, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
df = pd.read_fwf(fobj, widths=widths, names=names, index_col=False)
结果:
yyyy mm NAO EA WP EP/NP PNA EA/WR SCA TNH POL PT Expl. Var.
0 1950 1 0.56 -2.71 -1.69 0.91 -3.65 2.29 0.78 0.55 -0.71 -99.9 86.0
1 1950 2 0.01 0.66 -1.36 -1.13 -1.69 -0.57 -0.94 -1.07 1.25 -99.9 58.0
2 1950 3 -0.78 0.82 -0.38 -0.02 -0.06 -1.80 -0.22 -99.90 0.78 -99.9 54.0
3 1950 4 0.65 0.28 -0.50 -1.87 -0.23 -2.50 0.46 -99.90 0.10 -99.9 64.0
4 1950 5 -0.50 -0.51 0.23 -0.98 -0.40 1.41 0.28 -99.90 0.55 -99.9 49.0