首先,我不确定这是否是发布此问题的正确位置,所以如果我错了,请移动它。感谢。
我有一个分配来比较Java和C#中的相同算法性能。该算法应该是A *搜索,但我认为我更像是洪水,但它运作良好,我不在这里修复它。首先,我将发布我在Java和C#中使用的代码,然后解释我得到的内容。
由于问题的主体限制为30000个字符并且我输入了更多,我不得不从Java和C#中删除函数readFile()以使其适合。
已更新
Jim Mischel指出我在C#版本中更新了哈希函数,使其与Java相同,从而提高了性能。
还要感谢Matt Timmermans,我意识到我一直在调试中运行C#(不考虑它的结果)并且更改为更多地释放性能。
C#版本:
文件:Program.cs
using System;
using System.Collections.Generic;
using System.IO;
using System.Diagnostics;
namespace A_Star_Compare
{
class Program
{
static int StartX = 0;
static int StartY = 0;
static int TargetX = 0;
static int TargetY = 0;
static int Width = 0;
static int Height = 0;
static TimeSpan TotalTime = TimeSpan.Zero;
static double[] TrialTimes = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static Dictionary<int, List<int>> Obstacles = new Dictionary<int, List<int>>();
static void Main(string[] args)
{
for (int z = 0; z < 10; z++)
{
int Index = 0;
Console.WriteLine("z: " + z);
for (int x = 0; x < 14; x++)
{
if (x < 10)
Index += 10;
else
Index += 100;
string Line = string.Empty;
string FileName = "Maps-" + Index + ".txt";
TotalTime = TimeSpan.Zero;
readFile(FileName);
TrialTimes[x] += (double)TotalTime.TotalSeconds / 100;
}
}
int Index0 = 0;
for (int i = 0; i < 14; i++)
{
if (i < 10)
Index0 += 10;
else
Index0 += 100;
string FileName = "Maps-" + Index0 + ".txt";
Console.WriteLine("{0} Map size: {1}*{2}. On average map solved in: {3}", FileName, Index0, Index0, (double)TrialTimes[i] / 10);
}
}
static void measureTime()
{
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
Algorithm Solve = new Algorithm(StartX, StartY, TargetX, TargetY, Width, Height, Obstacles);
Solve.FullSolve();
stopwatch.Stop();
TotalTime += stopwatch.Elapsed;
}
}
}
文件:Algorithm.cs
using System.Collections.Generic;
namespace A_Star_Compare
{
public class Node
{
public int X { get; set; }
public int Y { get; set; }
public int G { get; set; }
public int F { get; set; }
public int H { get; set; }
public Node PointsTo { get; set; }
public Node(int x, int y, int g, int f, int h, Node point)
{
this.X = x;
this.Y = y;
this.G = g;
this.F = f;
this.H = h;
this.PointsTo = point;
}
public override bool Equals(object obj)
{
Node rhs = obj as Node;
return rhs.X == this.X && rhs.Y == this.Y;
}
public override int GetHashCode()
{
int hash = 7;
hash = 83 * hash + this.X;
hash = 83 * hash + this.Y;
return hash;
}
}
class Algorithm
{
private Dictionary<int, List<int>> Obstacles { get; set; }
public HashSet<Node> OpenList { get; set; }
public HashSet<Node> ClosedList { get; set; }
private Node Parent { get; set; }
private Node LowestCost { get; set; }
private int StartX { get; set; }
private int StartY { get; set; }
private int TargetX { get; set; }
private int TargetY { get; set; }
private int Width { get; set; }
private int Height { get; set; }
private bool FirstIter = true;
public Algorithm(int stX, int stY, int tgX, int tgY, int wid, int hei, Dictionary<int, List<int>> obs)
{
this.StartX = stX;
this.StartY = stY;
this.TargetX = tgX;
this.TargetY = tgY;
this.Width = wid - 1;
this.Height = hei - 1;
this.Obstacles = new Dictionary<int, List<int>>(obs);
this.Parent = new Node(StartX, StartY, 0, 0, 0, null);
this.LowestCost = new Node(int.MaxValue, int.MaxValue, 0, int.MaxValue, 0, null);
this.ClosedList = new HashSet<Node>();
this.OpenList = new HashSet<Node>();
}
private bool IsBlockObstacle(int X, int Y)
{
if (Obstacles.ContainsKey(X) == false || (Obstacles.ContainsKey(X) == true && Obstacles[X].Contains(Y) == false))
return false;
return true;
}
private void Calculate(ref int H, int G, ref int F, int MovedX, int MovedY, Node AddToList)
{
int H1 = 0;
H = (TargetX - MovedX) * 10;
if (H < 0)
H *= -1;
H1 = (TargetY - MovedY) * 10;
if (H1 < 0)
H1 *= -1;
H += H1;
F = G + H;
AddToList.F = F;
AddToList.H = H;
AddToList.PointsTo = Parent;
}
private Node GetNodeFromOpen(Node Find)
{
Node Ret = null;
foreach (Node Nfo in OpenList)
{
if (Nfo.Equals(Find))
{
Ret = Nfo;
break;
}
}
return Ret;
}
private bool CheckNode(Node AddToList, int G)
{
if (!OpenList.Contains(AddToList))
{
OpenList.Add(AddToList);
return true;
}
else
{
Node Check = GetNodeFromOpen(AddToList);
if (Parent.G + G < Check.G)
{
int Offset = Check.G - Parent.G - G;
Check.G -= Offset;
Check.F -= Offset;
Check.PointsTo = Parent;
}
}
return false;
}
private void ChooseNode()
{
foreach (Node Nfo in OpenList)
{
if (Nfo.X == TargetX && Nfo.Y == TargetY)
{
LowestCost = Nfo;
break;
}
if (Nfo.F < LowestCost.F)
LowestCost = Nfo;
}
}
private void CountCost()
{
int[] Directions = { 1, -1 };
int[] Diagnoly = { 1, 1, -1, 1, 1, -1, -1, -1 };
int ParentX = Parent.X;
int ParentY = Parent.Y;
int MovedX = 0;
int MovedY = 0;
int H = 0;
int F = 0;
Node AddToList = null;
//Left and right
for (int i = 0; i < 2; i++)
{
//Check if it is possible to move right or left
if (ParentX + Directions[i] <= Width && ParentX + Directions[i] >= 0)
{
//Check if blocks to the right and left of parent aren't obstacles
if (!IsBlockObstacle(ParentX + Directions[i], ParentY))
{
AddToList = new Node(ParentX + Directions[i], ParentY, Parent.G + 10, 0, 0, null);
//Check if it is not on closed list
if (!ClosedList.Contains(AddToList))
{
MovedX = AddToList.X;
MovedY = AddToList.Y;
Calculate(ref H, AddToList.G, ref F, MovedX, MovedY, AddToList);
CheckNode(AddToList, 10);
}
}
}
}
//Up and down
for (int i = 0; i < 2; i++)
{
//Check if possible to move up or down
if (ParentY + Directions[i] <= Height && ParentY + Directions[i] >= 0)
{
//Check if higher and lower block of parent aren't obstacles
if (!IsBlockObstacle(ParentX, ParentY + Directions[i]))
{
AddToList = new Node(ParentX, ParentY + Directions[i], Parent.G + 10, 0, 0, null);
if (!ClosedList.Contains(AddToList))
{
MovedX = ParentX;
MovedY = ParentY + Directions[i];
Calculate(ref H, AddToList.G, ref F, MovedX, MovedY, AddToList);
CheckNode(AddToList, 10);
}
}
}
}
//Diagnoly
for (int i = 0; i < 8; i += 2)
{
if (ParentX + Diagnoly[i] <= Width && ParentX + Diagnoly[i] >= 0 && ParentY + Diagnoly[i + 1] <= Height && ParentY + Diagnoly[i + 1] >= 0)
{
if (!IsBlockObstacle(ParentX + Diagnoly[i], ParentY + Diagnoly[i + 1]))
{
AddToList = new Node(ParentX + Diagnoly[i], ParentY + Diagnoly[i + 1], Parent.G + 14, 0, 0, null);
if (!ClosedList.Contains(AddToList))
{
MovedX = ParentX + Diagnoly[i];
MovedY = ParentY + Diagnoly[i + 1];
Calculate(ref H, AddToList.G, ref F, MovedX, MovedY, AddToList);
CheckNode(AddToList, 14);
}
}
}
}
}
public void FullSolve()
{
Node Final = null;
if (FirstIter)
{
CountCost();
ChooseNode();
OpenList.Remove(Parent);
ClosedList.Add(Parent);
Parent = LowestCost;
OpenList.Remove(Parent);
ClosedList.Add(Parent);
FirstIter = false;
FullSolve();
}
else
{
while (true)
{
if (OpenList.Count == 0)
break;
CountCost();
HashSet<Node> Copy = new HashSet<Node>(OpenList);
foreach (Node Nfo in Copy)
{
Parent = Nfo;
CountCost();
ClosedList.Add(Parent);
OpenList.Remove(Parent);
if (Parent.X == TargetX && Parent.Y == TargetY)
{
Final = Parent;
break;
}
}
ChooseNode();
OpenList.Remove(Parent);
ClosedList.Add(Parent);
Parent = LowestCost;
LowestCost.F = int.MaxValue;
if (Parent.X == TargetX && Parent.Y == TargetY)
{
Final = Parent;
break;
}
}
}
}
}
}
Java版本:
文件:AStar_Compare.java
package a.star_compare;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import org.apache.commons.lang3.time.StopWatch;
public class AStar_Compare {
static double totalTime;
static double[] trialTimes = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static int startX;
static int startY;
static int targetX;
static int targetY;
static int width;
static int heigth;
static HashMap<Integer, List<Integer>> obstacles = new HashMap<>();
static NumberFormat formatter = new DecimalFormat("#0.000000000");
public static void main(String[] args) throws FileNotFoundException, IOException {
for (int z = 0; z < 10; z++) {
int Index = 0;
System.out.println("z: " + z);
for (int x = 0; x < 5; x++) {
if (x < 10) {
Index += 10;
} else {
Index += 100;
}
String fileName = "Maps-" + Index + ".txt";
totalTime = 0;
readFile(fileName);
trialTimes[x] += totalTime / 1E9 / 100;
}
}
int index0 = 0;
for (int i = 0; i < 14; i++) {
if (i < 10) {
index0 += 10;
} else {
index0 += 100;
}
trialTimes[i] /= 10;
String fileName = "Maps-" + index0 + ".txt";
System.out.println(fileName + " Map size: " + index0 + "*" + index0 + ". On average map solved in: " + formatter.format(trialTimes[i]));
}
}
static void measureTime() {
StopWatch time = new StopWatch();
time.start();
Algorithm solve = new Algorithm(obstacles, startX, startY, targetX, targetY, width, heigth);
solve.FullSolve();
time.stop();
totalTime += time.getNanoTime();
}
}
文件:Node.java
package a.star_compare;
public class Node {
public int x;
public int y;
public int g;
public int h;
public int f;
public Node pointsTo;
public Node(int gx, int gy, int gg, int gh, int gf, Node point){
this.x = gx;
this.y = gy;
this.g = gg;
this.h = gh;
this.f = gf;
this.pointsTo = point;
}
@Override
public boolean equals(Object other){
if(other == null) return false;
if(other == this) return true;
if(!(other instanceof Node)) return false;
Node rhs = (Node)other;
return this.x == rhs.x && this.y == rhs.y;
}
@Override
public int hashCode() {
int hash = 7;
hash = 83 * hash + this.x;
hash = 83 * hash + this.y;
return hash;
}
}
文件:Algorithm.java
package a.star_compare;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
public class Algorithm {
private final HashMap<Integer, List<Integer>> obstacles;
private final HashSet<Node> closedList;
private final HashSet<Node> openList;
private Node parent;
private Node lowestCost;
private final int startX;
private final int startY;
private final int targetX;
private final int targetY;
private final int width;
private final int height;
private boolean firstIter = true;
public Algorithm(HashMap<Integer, List<Integer>> obs, int stX, int stY, int tgX, int tgY, int wid, int hei) {
this.obstacles = new HashMap(obs);
this.startX = stX;
this.startY = stY;
this.targetX = tgX;
this.targetY = tgY;
this.width = wid - 1;
this.height = hei - 1;
this.parent = new Node(startX, startY, 0, 0, 0, null);
this.lowestCost = new Node(Integer.MAX_VALUE, Integer.MAX_VALUE, 0, Integer.MAX_VALUE, 0, null);
this.closedList = new HashSet<>();
this.openList = new HashSet<>();
}
private boolean isBlockObstacle(Integer x, Integer y) {
if (obstacles.containsKey(x) == false || (obstacles.containsKey(x) == true && obstacles.get(x).contains(y) == false)) {
return false;
}
return true;
}
private void calculate(int h, int g, int f, int movedX, int movedY, Node addToList) {
int h1 = 0;
h = (targetX - movedX) * 10;
if (h < 0) {
h *= -1;
}
h1 = (targetY - movedY) * 10;
if (h1 < 0) {
h1 *= -1;
}
h += h1;
f = g + h;
addToList.f = f;
addToList.h = h;
addToList.pointsTo = parent;
}
private Node getNodeFromOpen(Node find) {
Node ret = null;
for (Node nfo : openList) {
if (nfo.equals(find)) {
ret = nfo;
break;
}
}
return ret;
}
private boolean checkNode(Node addToList, int g) {
if (!openList.contains(addToList)) {
openList.add(addToList);
return true;
} else {
Node check = getNodeFromOpen(addToList);
if (parent.g + g < check.g) {
int offset = check.g - parent.g - g;
check.g -= offset;
check.f -= offset;
check.pointsTo = parent;
}
}
return false;
}
private void chooseNode() {
for (Node nfo : openList) {
if (nfo.x == targetX && nfo.y == targetY) {
lowestCost = nfo;
break;
}
if (nfo.f < lowestCost.f) {
lowestCost = nfo;
}
}
}
private void countCost() {
int[] directions = {1, -1};
int[] diagnoly = {1, 1, -1, 1, 1, -1, -1, -1};
int parentX = parent.x;
int parentY = parent.y;
int movedX = 0;
int movedY = 0;
int h = 0;
int f = 0;
Node addToList = null;
//Left and right
for (int i = 0; i < 2; i++) {
//Check if it is possible to move right or left
if (parentX + directions[i] <= width && parentX + directions[i] >= 0) {
//Check if blocks to the right and left of parent aren't obstacles
if (!isBlockObstacle(parentX + directions[i], parentY)) {
addToList = new Node(parentX + directions[i], parentY, parent.g + 10, 0, 0, null);
//Check if it is not on closed list
if (!closedList.contains(addToList)) {
movedX = addToList.x;
movedY = addToList.y;
calculate(h, addToList.g, f, movedX, movedY, addToList);
checkNode(addToList, 10);
}
}
}
}
//Up and down
for (int i = 0; i < 2; i++) {
//Check if possible to move up or down
if (parentY + directions[i] <= height && parentY + directions[i] >= 0) {
//Check if higher and lower block of parent aren't obstacles
if (!isBlockObstacle(parentX, parentY + directions[i])) {
addToList = new Node(parentX, parentY + directions[i], parent.g + 10, 0, 0, null);
if (!closedList.contains(addToList)) {
movedX = parentX;
movedY = parentY + directions[i];
calculate(h, addToList.g, f, movedX, movedY, addToList);
checkNode(addToList, 10);
}
}
}
}
//diagnoly
for (int i = 0; i < 8; i += 2) {
if (parentX + diagnoly[i] <= width && parentX + diagnoly[i] >= 0 && parentY + diagnoly[i + 1] <= height && parentY + diagnoly[i + 1] >= 0) {
if (!isBlockObstacle(parentX + diagnoly[i], parentY + diagnoly[i + 1])) {
addToList = new Node(parentX + diagnoly[i], parentY + diagnoly[i + 1], parent.g + 14, 0, 0, null);
if (!closedList.contains(addToList)) {
movedX = parentX + diagnoly[i];
movedY = parentY + diagnoly[i + 1];
calculate(h, addToList.g, f, movedX, movedY, addToList);
checkNode(addToList, 14);
}
}
}
}
}
public void FullSolve() {
Node finalPath = null;
if (firstIter) {
countCost();
chooseNode();
openList.remove(parent);
closedList.add(parent);
parent = lowestCost;
openList.remove(parent);
closedList.add(parent);
firstIter = false;
FullSolve();
} else {
while (true) {
if (openList.isEmpty()) {
break;
}
countCost();
HashSet<Node> copy = new HashSet<>(openList);
for (Node nfo : copy) {
parent = nfo;
countCost();
closedList.add(parent);
openList.remove(parent);
if (parent.x == targetX && parent.y == targetY) {
finalPath = parent;
break;
}
}
chooseNode();
openList.remove(parent);
closedList.add(parent);
parent = lowestCost;
lowestCost.f = Integer.MAX_VALUE;
if (parent.x == targetX && parent.y == targetY) {
finalPath = parent;
break;
}
}
}
}
}
测试是使用预生成的地图文件完成的。我有14个地图文件,每个都包含100个特定大小的地图。最低的一个是10 * 10,最高的是500 * 500。
另请注意,如果每个地图都有100个示例,则意味着算法经过100次测试才能使用一个特定大小,而且我想提高准确度,因此我重复整个过程10次。这让我用一张地图进行1000次测试。我当然平均那些时间。
我并不熟悉高精度时间测量方法,因此我在Java和C#中使用StopWatch()
(在Java中使用它我从apache commons下载它)。我做的是在阅读了一个我称为函数measureTime()
的地图信息并启动StopWatch()
然后调用算法类并使其解决拼图后我停止StopWatch()
并花费时间。
以下是我得到的结果:
我发布图片是因为我不确定如何在这里制作表格。时间排在第二位,平均解决一张地图需要多少时间。
注意&#34; - &#34;符号有地图大小。 (Maps-20.txt表示按20 * 20映射,依此类推)
也是图表:
这些结果让我感到惊讶,我期待一种语言有一点优势,但不是这样的。更新后,C#graph看起来与Java图类似,但增长率更高。首先我认为在将算法复制到Java时我犯了一些错误(首先我用C#编写),但我找不到任何错误。所以假设我没有犯一些愚蠢的错误。
如何进一步提高C#性能?
我还考虑过在Dictionary<int, List<int>>
而不是List<int>
中获取这些结果的一件事我可以使用HashSet<int>
因为我只需要确认元素是否存在。但由于我没有处理成千上万的元素,所以我不认为它可能是主要因素。
感谢。