我正在尝试量化大量的图像数据。每个图像都有细胞和细胞核。 必须要做的是以示意图的形式表示为“我需要的东西”:
示例图像显示在“原始图像”中:
我找到了一个在线分水岭算法程序来计算细胞,但我无法计算细胞内部(和外部)的细胞核数量。
这是我用来计算原始图像中的单元格的程序
#import packages
import numpy as np
import matplotlib.pyplot as plt
from skimage import io, color, filters as filters
from scipy import ndimage
from skimage.morphology import watershed
from skimage.feature import peak_local_max
from skimage.measure import regionprops, label
import numpy as np
from scipy.ndimage import gaussian_filter
import matplotlib.pyplot as plt
from skimage import data
from skimage import img_as_float
from skimage.morphology import reconstruction
import skimage
from skimage import segmentation
%matplotlib inline
import matplotlib
#import image
from IPython.core.display import Image
Image(filename=('/Users/sasi/Desktop/image1.jpeg'))
# Find number of cells
image = color.rgb2gray(io.imread('/Users/sasi/Desktop/image1.jpeg'))
image = image < filters.threshold_otsu(image)
distance = ndimage.distance_transform_edt(image)
local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=image)
markers, num_features = ndimage.label(local_maxi)
labels = watershed(-distance, markers, mask=image)
regions = regionprops(labels)
regions = [r for r in regions if r.area > 60]
print('Number of cells:', len(regions) - 1)
我应该如何计算细胞内的细胞核以及整个图像中的核数?另外,如果你有另一个更好的计算细胞计划,请告诉我。
答案 0 :(得分:0)
import cv2
import numpy as np
from skimage.feature import peak_local_max
from skimage.morphology import watershed
from scipy import ndimage
image=cv2.imread("Da0003.jpg")
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
sigma=2
gauss_img = cv2.GaussianBlur(gray_image,(0,0),1.6*sigma,0)
main_img = cv2.GaussianBlur(gray_image,(0,0),sigma,0)
ret,threshold_img = cv2.threshold(main_img,127,255,cv2.THRESH_BINARY)
threshold=cv2.bitwise_not(threshold_img)
D = ndimage.distance_transform_edt(threshold)
localMax = peak_local_max(D, indices=False, min_distance=10,
labels=threshold)
markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
labels = watershed(-D, markers, mask=threshold)
for label in np.unique(labels):
# if the label is zero, we are examining the 'background'
# so simply ignore it
if label == 0:
continue
# otherwise, allocate memory for the label region and draw
# it on the mask
x,y,_=image.shape
image_copy=image
mask = np.zeros((x,y), dtype="uint8")
mask[labels == label] = 255
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
c = max(cnts, key=cv2.contourArea)
cv2.drawContours(image_copy, [c], -1, (0, 255, 255), 1)
#print(label)
cv2.imwrite("_watershead"+".jpg", image_copy)
print("count:"+str(label))