如何从元组列表中提取模式元组?

时间:2016-12-13 22:20:54

标签: python python-3.x parsing data-structures pattern-matching

我有以下列表:

$('.profile-badge__follow:contains("Follow")').click();

考虑到每个元组的第二个元素,我想提取三重模式。例如,我想说我想提取具有第二个元素data = [('Mr', 'PROPN'), ('.', 'PUNCT'), ('William', 'PROPN'), ('Henry', 'PROPN'), ('Gates', 'PROPN'), (',', 'PUNCT'), ('III', 'NUM'), ('is', 'VERB'), ('Founder', 'PROPN'), ('and', 'CONJ'), ('Technology', 'PROPN'), ('Advisor', 'NOUN'), ('Director', 'NOUN'), ('of', 'ADP'), ('Microsoft', 'PROPN'), ('Corporation', 'PROPN'), ('a', 'DET'), ('cofounder', 'NOUN'), ('served', 'VERB'), ('as', 'ADP'), ('Chairman', 'PROPN'), ('from', 'ADP'), ('our', 'PRON'), ('incorporation', 'NOUN'), ('in', 'ADP'), ('1981', 'NUM'), ('until', 'ADP'), ('2014', 'NUM'), ('He', 'PRON'), ('currently', 'ADV'), ('acts', 'VERB'), ('Technical', 'ADJ'), ('to', 'ADP'), ('Nadella', 'NUM'), ('on', 'ADP'), ('key', 'ADJ'), ('development', 'NOUN'), ('projects', 'NOUN'), ('retired', 'VERB'), ('an', 'DET'), ('employee', 'NOUN'), ('2008', 'NUM'), ('Chief', 'NOUN'), ('Software', 'PROPN'), ('Architect', 'PROPN'), ('2000', 'NUM'), ('2006', 'NUM'), ('when', 'ADV'), ('he', 'PRON'), ('announced', 'VERB'), ('his', 'PRON'), ('two', 'NUM'), ('-', 'PUNCT'), ('year', 'NOUN'), ('plan', 'NOUN'), ('transition', 'VERB'), ('out', 'ADP'), ('day', 'NOUN'), ('full', 'ADJ'), ('time', 'NOUN'), ('role', 'NOUN'), ('Executive', 'PROPN'), ('Officer', 'PROPN'), ('resigned', 'VERB'), ('assumed', 'VERB'), ('the', 'DET'), ('position', 'NOUN'), ('As', 'ADP'), ('co', 'PROPN'), ('chair', 'NOUN'), ('Bill', 'NOUN'), ('&', 'CONJ'), ('Melinda', 'PROPN'), ('Foundation', 'PROPN'), ('shapes', 'NOUN'), ('approves', 'VERB'), ('grant', 'NOUN'), ('making', 'VERB'), ('strategies', 'NOUN'), ('advocates', 'NOUN'), ('for', 'ADP'), ('foundation’s', 'NUM'), ('issues', 'NOUN'), ('helps', 'VERB'), ('set', 'VERB'), ('overall', 'ADJ'), ('direction', 'NOUN'), ('organization', 'NOUN'), ('founder', 'NOUN'), ('’', 'NUM'), ('foresight', 'NOUN'), ('vision', 'NOUN'), ('personal', 'ADJ'), ('computing', 'NOUN'), ('have', 'AUX'), ('been', 'VERB'), ('central', 'ADJ'), ('success', 'NOUN'), ('software', 'NOUN'), ('industry', 'NOUN'), ('has', 'VERB'), ('unparalleled', 'ADJ'), ('knowledge', 'NOUN'), ('Company’s', 'NUM'), ('history', 'NOUN'), ('technologies', 'NOUN'), ('Company', 'NOUN'), ('its', 'PRON'), ('grew', 'VERB'), ('fledgling', 'ADJ'), ('business', 'NOUN'), ('into', 'ADP'), ('world’s', 'NUM'), ('leading', 'VERB'), ('company', 'NOUN'), ('process', 'NOUN'), ('creating', 'VERB'), ('one', 'NUM'), ('most', 'ADV'), ('prolific', 'ADJ'), ('sources', 'NOUN'), ('innovation', 'NOUN'), ('powerful', 'ADJ'), ('brands', 'NOUN'), ('through', 'ADP'), ('motion', 'NOUN'), ('technological', 'ADJ'), ('strategic', 'ADJ'), ('programs', 'NOUN'), ('that', 'DET'), ('are', 'VERB'), ('core', 'NOUN'), ('part', 'NOUN'), ('continues', 'VERB'), ('provide', 'VERB'), ('technical', 'ADJ'), ('input', 'NOUN'), ('evolution', 'NOUN'), ('productivity', 'NOUN'), ('platform', 'NOUN'), ('mobile', 'NOUN'), ('first', 'ADJ'), ('cloud', 'NOUN'), ('world', 'NOUN'), ('His', 'PRON'), ('work', 'NOUN'), ('overseeing', 'VERB'), ('provides', 'VERB'), ('global', 'ADJ'), ('insights', 'NOUN'), ('relevant', 'ADJ'), ('current', 'ADJ'), ('future', 'ADJ'), ('opportunities', 'NOUN'), ('keen', 'ADJ'), ('appreciation', 'NOUN'), ('stakeholder', 'ADJ'), ('interests', 'NOUN')] 'of'的元组之间'NOUN'的所有元组:

'PROPN'

因此,我的问题是如何在不使用正则表达式的情况下提取上述模式?我不想使用正则表达式的原因是因为,我将开始以更多不同的方式提取元组。例如,具有第一个值[('Director', 'NOUN'), ('of', 'ADP'), ('Microsoft', 'PROPN')] 后跟'world’s''VERB'的元组:

'NOUN'

5 个答案:

答案 0 :(得分:1)

你可以用:

循环它
data = [('Mr', 'PROPN'), ('.', 'PUNCT'), ('William', 'PROPN'), ('Henry', 'PROPN'), ('Gates', 'PROPN'), (',', 'PUNCT'), ('III', 'NUM'), ('is', 'VERB'), ('Founder', 'PROPN'), ('and', 'CONJ'), ('Technology', 'PROPN'), ('Advisor', 'NOUN'), ('Director', 'NOUN'), ('of', 'ADP'), ('Microsoft', 'PROPN'), ('Corporation', 'PROPN'), ('a', 'DET'), ('cofounder', 'NOUN'), ('served', 'VERB'), ('as', 'ADP'), ('Chairman', 'PROPN'), ('from', 'ADP'), ('our', 'PRON'), ('incorporation', 'NOUN'), ('in', 'ADP'), ('1981', 'NUM'), ('until', 'ADP'), ('2014', 'NUM'), ('He', 'PRON'), ('currently', 'ADV'), ('acts', 'VERB'), ('Technical', 'ADJ'), ('to', 'ADP'), ('Nadella', 'NUM'), ('on', 'ADP'), ('key', 'ADJ'), ('development', 'NOUN'), ('projects', 'NOUN'), ('retired', 'VERB'), ('an', 'DET'), ('employee', 'NOUN'), ('2008', 'NUM'), ('Chief', 'NOUN'), ('Software', 'PROPN'), ('Architect', 'PROPN'), ('2000', 'NUM'), ('2006', 'NUM'), ('when', 'ADV'), ('he', 'PRON'), ('announced', 'VERB'), ('his', 'PRON'), ('two', 'NUM'), ('-', 'PUNCT'), ('year', 'NOUN'), ('plan', 'NOUN'), ('transition', 'VERB'), ('out', 'ADP'), ('day', 'NOUN'), ('full', 'ADJ'), ('time', 'NOUN'), ('role', 'NOUN'), ('Executive', 'PROPN'), ('Officer', 'PROPN'), ('resigned', 'VERB'), ('assumed', 'VERB'), ('the', 'DET'), ('position', 'NOUN'), ('As', 'ADP'), ('co', 'PROPN'), ('chair', 'NOUN'), ('Bill', 'NOUN'), ('&', 'CONJ'), ('Melinda', 'PROPN'), ('Foundation', 'PROPN'), ('shapes', 'NOUN'), ('approves', 'VERB'), ('grant', 'NOUN'), ('making', 'VERB'), ('strategies', 'NOUN'), ('advocates', 'NOUN'), ('for', 'ADP'), ('foundation’s', 'NUM'), ('issues', 'NOUN'), ('helps', 'VERB'), ('set', 'VERB'), ('overall', 'ADJ'), ('direction', 'NOUN'), ('organization', 'NOUN'), ('founder', 'NOUN'), ('’', 'NUM'), ('foresight', 'NOUN'), ('vision', 'NOUN'), ('personal', 'ADJ'), ('computing', 'NOUN'), ('have', 'AUX'), ('been', 'VERB'), ('central', 'ADJ'), ('success', 'NOUN'), ('software', 'NOUN'), ('industry', 'NOUN'), ('has', 'VERB'), ('unparalleled', 'ADJ'), ('knowledge', 'NOUN'), ('Company’s', 'NUM'), ('history', 'NOUN'), ('technologies', 'NOUN'), ('Company', 'NOUN'), ('its', 'PRON'), ('grew', 'VERB'), ('fledgling', 'ADJ'), ('business', 'NOUN'), ('into', 'ADP'), ('world’s', 'NUM'), ('leading', 'VERB'), ('company', 'NOUN'), ('process', 'NOUN'), ('creating', 'VERB'), ('one', 'NUM'), ('most', 'ADV'), ('prolific', 'ADJ'), ('sources', 'NOUN'), ('innovation', 'NOUN'), ('powerful', 'ADJ'), ('brands', 'NOUN'), ('through', 'ADP'), ('motion', 'NOUN'), ('technological', 'ADJ'), ('strategic', 'ADJ'), ('programs', 'NOUN'), ('that', 'DET'), ('are', 'VERB'), ('core', 'NOUN'), ('part', 'NOUN'), ('continues', 'VERB'), ('provide', 'VERB'), ('technical', 'ADJ'), ('input', 'NOUN'), ('evolution', 'NOUN'), ('productivity', 'NOUN'), ('platform', 'NOUN'), ('mobile', 'NOUN'), ('first', 'ADJ'), ('cloud', 'NOUN'), ('world', 'NOUN'), ('His', 'PRON'), ('work', 'NOUN'), ('overseeing', 'VERB'), ('provides', 'VERB'), ('global', 'ADJ'), ('insights', 'NOUN'), ('relevant', 'ADJ'), ('current', 'ADJ'), ('future', 'ADJ'), ('opportunities', 'NOUN'), ('keen', 'ADJ'), ('appreciation', 'NOUN'), ('stakeholder', 'ADJ'), ('interests', 'NOUN')]
[(x,y) for x,y in data if ('NOUN' == y) or ('PROPN' in y)]

我提出了两种方法来评估上面的一个,以便你可以选择。 您还可以通过将其转换为pandas来使用更强大的语法进行查询。这有助于使用数据帧进行更复杂的查询。

import pandas as pd
data = [('Mr', 'PROPN'), ('.', 'PUNCT'), ('William', 'PROPN'), ('Henry', 'PROPN'), ('Gates', 'PROPN'), (',', 'PUNCT'), ('III', 'NUM'), ('is', 'VERB'), ('Founder', 'PROPN'), ('and', 'CONJ'), ('Technology', 'PROPN'), ('Advisor', 'NOUN'), ('Director', 'NOUN'), ('of', 'ADP'), ('Microsoft', 'PROPN'), ('Corporation', 'PROPN'), ('a', 'DET'), ('cofounder', 'NOUN'), ('served', 'VERB'), ('as', 'ADP'), ('Chairman', 'PROPN'), ('from', 'ADP'), ('our', 'PRON'), ('incorporation', 'NOUN'), ('in', 'ADP'), ('1981', 'NUM'), ('until', 'ADP'), ('2014', 'NUM'), ('He', 'PRON'), ('currently', 'ADV'), ('acts', 'VERB'), ('Technical', 'ADJ'), ('to', 'ADP'), ('Nadella', 'NUM'), ('on', 'ADP'), ('key', 'ADJ'), ('development', 'NOUN'), ('projects', 'NOUN'), ('retired', 'VERB'), ('an', 'DET'), ('employee', 'NOUN'), ('2008', 'NUM'), ('Chief', 'NOUN'), ('Software', 'PROPN'), ('Architect', 'PROPN'), ('2000', 'NUM'), ('2006', 'NUM'), ('when', 'ADV'), ('he', 'PRON'), ('announced', 'VERB'), ('his', 'PRON'), ('two', 'NUM'), ('-', 'PUNCT'), ('year', 'NOUN'), ('plan', 'NOUN'), ('transition', 'VERB'), ('out', 'ADP'), ('day', 'NOUN'), ('full', 'ADJ'), ('time', 'NOUN'), ('role', 'NOUN'), ('Executive', 'PROPN'), ('Officer', 'PROPN'), ('resigned', 'VERB'), ('assumed', 'VERB'), ('the', 'DET'), ('position', 'NOUN'), ('As', 'ADP'), ('co', 'PROPN'), ('chair', 'NOUN'), ('Bill', 'NOUN'), ('&', 'CONJ'), ('Melinda', 'PROPN'), ('Foundation', 'PROPN'), ('shapes', 'NOUN'), ('approves', 'VERB'), ('grant', 'NOUN'), ('making', 'VERB'), ('strategies', 'NOUN'), ('advocates', 'NOUN'), ('for', 'ADP'), ('foundation’s', 'NUM'), ('issues', 'NOUN'), ('helps', 'VERB'), ('set', 'VERB'), ('overall', 'ADJ'), ('direction', 'NOUN'), ('organization', 'NOUN'), ('founder', 'NOUN'), ('’', 'NUM'), ('foresight', 'NOUN'), ('vision', 'NOUN'), ('personal', 'ADJ'), ('computing', 'NOUN'), ('have', 'AUX'), ('been', 'VERB'), ('central', 'ADJ'), ('success', 'NOUN'), ('software', 'NOUN'), ('industry', 'NOUN'), ('has', 'VERB'), ('unparalleled', 'ADJ'), ('knowledge', 'NOUN'), ('Company’s', 'NUM'), ('history', 'NOUN'), ('technologies', 'NOUN'), ('Company', 'NOUN'), ('its', 'PRON'), ('grew', 'VERB'), ('fledgling', 'ADJ'), ('business', 'NOUN'), ('into', 'ADP'), ('world’s', 'NUM'), ('leading', 'VERB'), ('company', 'NOUN'), ('process', 'NOUN'), ('creating', 'VERB'), ('one', 'NUM'), ('most', 'ADV'), ('prolific', 'ADJ'), ('sources', 'NOUN'), ('innovation', 'NOUN'), ('powerful', 'ADJ'), ('brands', 'NOUN'), ('through', 'ADP'), ('motion', 'NOUN'), ('technological', 'ADJ'), ('strategic', 'ADJ'), ('programs', 'NOUN'), ('that', 'DET'), ('are', 'VERB'), ('core', 'NOUN'), ('part', 'NOUN'), ('continues', 'VERB'), ('provide', 'VERB'), ('technical', 'ADJ'), ('input', 'NOUN'), ('evolution', 'NOUN'), ('productivity', 'NOUN'), ('platform', 'NOUN'), ('mobile', 'NOUN'), ('first', 'ADJ'), ('cloud', 'NOUN'), ('world', 'NOUN'), ('His', 'PRON'), ('work', 'NOUN'), ('overseeing', 'VERB'), ('provides', 'VERB'), ('global', 'ADJ'), ('insights', 'NOUN'), ('relevant', 'ADJ'), ('current', 'ADJ'), ('future', 'ADJ'), ('opportunities', 'NOUN'), ('keen', 'ADJ'), ('appreciation', 'NOUN'), ('stakeholder', 'ADJ'), ('interests', 'NOUN')]
data = pd.DataFrame(data, columns=['word','type'])
data[(data.type=='NOUN') | (data.type=='PROPN')]

评论部分的附录:

您可以找到有关数据的内容,例如。

data.groupby(data.type).count()

       word
type
ADJ      20
ADP      12
ADV       3
AUX       1
CONJ      2
DET       4
NOUN     56
NUM      13
PRON      6
PROPN    16
PUNCT     3
VERB     22

在完成运算后,您可以将其转换回python数据类型。

list(data[(data.type=='NOUN') | (data.type=='PROPN')].word)

答案 1 :(得分:1)

相对较快,但可能是不必要的紧凑解决方案:

from itertools import chain

# Generator of three-tuples matching requirements:
# If `data` is large enough that temp `list`s are a problem, might be worth
# using itertools.islice instead of shallow copy slices
# or using enumerate with lookaround indexing
matchtups = (((wd0, tp0), (wd1, tp1), (wd2, tp2))
             for (wd0, tp0), (wd1, tp1), (wd2, tp2) in zip(data, data[1:], data[2:])
             if wd1 == 'of' and tp0 == 'NOUN' and tp2 == 'PROPN')

# Flatten out the three-tuple structure:
results = list(chain.from_iterable(matchtups))

答案 2 :(得分:1)

喜欢这样吗?

thing_list = []
for i, x in enumerate(data):
    if x[0] == "of":
        if (data[i-1][1] == "NOUN") and (data[i+1][1] == "PROPN"):
            thing_list.append(data[i-1:i+2])

答案 3 :(得分:1)

这只是因为看起来很有趣而解决了这个问题。如果您愿意忍受maplambdafilter的汤,这似乎有效:

matches = map(
    lambda _: (data[_ - 1], data[_], data[_ + 1]),
    filter(
        lambda _: data[_ - 1][1] == "NOUN" and data[_ + 1][1] == "PROPN",
        map(
            lambda _: _[0],
            filter(
                lambda _: _[1][0] == "of",
                enumerate(data)
            )
        )
    )
)

答案 4 :(得分:1)

def trioPattern( trioCols, trioElements):
    """trioCols = (Use element 0 or 1 of the first pair, 0 or 1 of the second pair, 0 or 1 of the third pair)
       trioElements = (Phrase of the first element, Phrase of the second element, Phrase of the third element)"""

    data = [('Mr', 'PROPN'), ('.', 'PUNCT'), ('William', 'PROPN'), ('Henry', 'PROPN'), ('Gates', 'PROPN'), (',', 'PUNCT'), ('III', 'NUM'), ('is', 'VERB'), ('Founder', 'PROPN'), ('and', 'CONJ'), ('Technology', 'PROPN'), ('Advisor', 'NOUN'), ('Director', 'NOUN'), ('of', 'ADP'), ('Microsoft', 'PROPN'), ('Corporation', 'PROPN'), ('a', 'DET'), ('cofounder', 'NOUN'), ('served', 'VERB'), ('as', 'ADP'), ('Chairman', 'PROPN'), ('from', 'ADP'), ('our', 'PRON'), ('incorporation', 'NOUN'), ('in', 'ADP'), ('1981', 'NUM'), ('until', 'ADP'), ('2014', 'NUM'), ('He', 'PRON'), ('currently', 'ADV'), ('acts', 'VERB'), ('Technical', 'ADJ'), ('to', 'ADP'), ('Nadella', 'NUM'), ('on', 'ADP'), ('key', 'ADJ'), ('development', 'NOUN'), ('projects', 'NOUN'), ('retired', 'VERB'), ('an', 'DET'), ('employee', 'NOUN'), ('2008', 'NUM'), ('Chief', 'NOUN'), ('Software', 'PROPN'), ('Architect', 'PROPN'), ('2000', 'NUM'), ('2006', 'NUM'), ('when', 'ADV'), ('he', 'PRON'), ('announced', 'VERB'), ('his', 'PRON'), ('two', 'NUM'), ('-', 'PUNCT'), ('year', 'NOUN'), ('plan', 'NOUN'), ('transition', 'VERB'), ('out', 'ADP'), ('day', 'NOUN'), ('full', 'ADJ'), ('time', 'NOUN'), ('role', 'NOUN'), ('Executive', 'PROPN'), ('Officer', 'PROPN'), ('resigned', 'VERB'), ('assumed', 'VERB'), ('the', 'DET'), ('position', 'NOUN'), ('As', 'ADP'), ('co', 'PROPN'), ('chair', 'NOUN'), ('Bill', 'NOUN'), ('&', 'CONJ'), ('Melinda', 'PROPN'), ('Foundation', 'PROPN'), ('shapes', 'NOUN'), ('approves', 'VERB'), ('grant', 'NOUN'), ('making', 'VERB'), ('strategies', 'NOUN'), ('advocates', 'NOUN'), ('for', 'ADP'), ('foundation’s', 'NUM'), ('issues', 'NOUN'), ('helps', 'VERB'), ('set', 'VERB'), ('overall', 'ADJ'), ('direction', 'NOUN'), ('organization', 'NOUN'), ('founder', 'NOUN'), ('’', 'NUM'), ('foresight', 'NOUN'), ('vision', 'NOUN'), ('personal', 'ADJ'), ('computing', 'NOUN'), ('have', 'AUX'), ('been', 'VERB'), ('central', 'ADJ'), ('success', 'NOUN'), ('software', 'NOUN'), ('industry', 'NOUN'), ('has', 'VERB'), ('unparalleled', 'ADJ'), ('knowledge', 'NOUN'), ('Company’s', 'NUM'), ('history', 'NOUN'), ('technologies', 'NOUN'), ('Company', 'NOUN'), ('its', 'PRON'), ('grew', 'VERB'), ('fledgling', 'ADJ'), ('business', 'NOUN'), ('into', 'ADP'), ('world’s', 'NUM'), ('leading', 'VERB'), ('company', 'NOUN'), ('process', 'NOUN'), ('creating', 'VERB'), ('one', 'NUM'), ('most', 'ADV'), ('prolific', 'ADJ'), ('sources', 'NOUN'), ('innovation', 'NOUN'), ('powerful', 'ADJ'), ('brands', 'NOUN'), ('through', 'ADP'), ('motion', 'NOUN'), ('technological', 'ADJ'), ('strategic', 'ADJ'), ('programs', 'NOUN'), ('that', 'DET'), ('are', 'VERB'), ('core', 'NOUN'), ('part', 'NOUN'), ('continues', 'VERB'), ('provide', 'VERB'), ('technical', 'ADJ'), ('input', 'NOUN'), ('evolution', 'NOUN'), ('productivity', 'NOUN'), ('platform', 'NOUN'), ('mobile', 'NOUN'), ('first', 'ADJ'), ('cloud', 'NOUN'), ('world', 'NOUN'), ('His', 'PRON'), ('work', 'NOUN'), ('overseeing', 'VERB'), ('provides', 'VERB'), ('global', 'ADJ'), ('insights', 'NOUN'), ('relevant', 'ADJ'), ('current', 'ADJ'), ('future', 'ADJ'), ('opportunities', 'NOUN'), ('keen', 'ADJ'), ('appreciation', 'NOUN'), ('stakeholder', 'ADJ'), ('interests', 'NOUN')]

    #Elements of the triple pattern
    ColE1, ColE2, ColE3 = trioCols
    trios = dict([( (data[e][ColE1], data[e+1][ColE2], data[e+2][ColE3]), (data[e], data[e+1], data[e+2])) for e in range(0, len(data)-2)])

    #Triple pattern phrases
    E1, E2, E3 = trioElements
    if trios.has_key((E1, E2, E3)):
        return trios[(E1, E2, E3)]
    else:
        return "Not found"

示例:

trioPattern((1,0,1),(“NOUN”,“of”,“PROPN”))

(('Director', 'NOUN'), ('of', 'ADP'), ('Microsoft', 'PROPN'))

trioPattern((0,1,1),(“世界”,“VERB”,“NOUN”))

(('world’s', 'NUM'), ('leading', 'VERB'), ('company', 'NOUN'))