Spark 2.0.2在rdds /嵌套rdds或数据框或数据集中嵌套K-means

时间:2016-12-13 15:56:20

标签: scala apache-spark apache-spark-mllib

我试图并行运行大量的k-means。我有一个房间和大量的数据,我想计算每个房间的集群。所以我有

roomsSignals[(room:String, signals:List[org.apache.spark.mllib.linalg.Vector]]

roomsSignals.map{l=>
val data=sc.parallelize(l.signals)
 val clusterCenters=2
 val model = KMeans.train(data, clusterCenters, 5)
    model.clusterCenters.map { r =>r.toJson.toString}.mkString(",")

}.collect.foreach(println)

这给了我错误:

org.apache.spark.SparkException: Job aborted due to stage failure: Task 33 in stage 18.0 failed 4 times, most recent failure: Lost task 33.3 in stage 18.0 (TID 1284, 192.168.181.122):     java.lang.NullPointerException
at $anonfun$1.apply(<console>:77)
at $anonfun$1.apply(<console>:76)
at scala.collection.Iter    ator$$anon$11.next(Iter    ator.scala:409)
at scala.collection.Iter    ator$class.foreach(Iter    ator.scala:893)
at scala.collection.AbstractIter    ator.foreach(Iter    ator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIter    ator.to(Iter    ator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIter    ator.toBuffer(Iter    ator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIter    ator.toArray(Iter    ator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:912)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:912)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1916)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1916)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)

1 个答案:

答案 0 :(得分:0)

不幸的是,这是不可能的。 Spark根本不支持任何类型的嵌套。

训练独立的分布式模型迭代roomsSignals.collect或使用本地选择的库来构建分布式结构中的模型。