我是火花流的初学者,并尝试使用scala进行流线性回归示例。因此,当我搜索时,我发现了很多使用RDD的流机器学习算法的例子。但是,是否可以使用数据集(在spark 2.0.1中引入)来代替RDD进行流式传输。有没有办法验证代码是使用RDD还是数据集?我已经在下面发布了我的代码。任何帮助表示赞赏。
import scala.language.reflectiveCalls
import scopt.OptionParser
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.sql.{ DataFrame, SparkSession }
import com.sun.xml.internal.ws.wsdl.writer.document.Import
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import java.lang.Boolean
object LinearRegressionExample {
case class Params(
input: String = null,
testInput: String = "",
dataFormat: String = "libsvm",
regParam: Double = 0.0,
elasticNetParam: Double = 0.0,
maxIter: Int = 100,
tol: Double = 1E-6,
fracTest: Double = 0.2) extends AbstractParams[Params]
def main(args: Array[String]) {
val defaultParams = Params()
val parser = new OptionParser[Params]("LinearRegressionExample") {
head("LinearRegressionExample: an example Linear Regression with Elastic-Net app.")
opt[Double]("regParam")
.text(s"regularization parameter, default: ${defaultParams.regParam}")
.action((x, c) => c.copy(regParam = x))
opt[Double]("elasticNetParam")
.text(s"ElasticNet mixing parameter. For alpha = 0, the penalty is an L2 penalty. " +
s"For alpha = 1, it is an L1 penalty. For 0 < alpha < 1, the penalty is a combination of " +
s"L1 and L2, default: ${defaultParams.elasticNetParam}")
.action((x, c) => c.copy(elasticNetParam = x))
opt[Int]("maxIter")
.text(s"maximum number of iterations, default: ${defaultParams.maxIter}")
.action((x, c) => c.copy(maxIter = x))
opt[Double]("tol")
.text(s"the convergence tolerance of iterations, Smaller value will lead " +
s"to higher accuracy with the cost of more iterations, default: ${defaultParams.tol}")
.action((x, c) => c.copy(tol = x))
opt[Double]("fracTest")
.text(s"fraction of data to hold out for testing. If given option testInput, " +
s"this option is ignored. default: ${defaultParams.fracTest}")
.action((x, c) => c.copy(fracTest = x))
opt[String]("testInput")
.text(s"input path to test dataset. If given, option fracTest is ignored." +
s" default: ${defaultParams.testInput}")
.action((x, c) => c.copy(testInput = x))
opt[String]("dataFormat")
.text("data format: libsvm (default), dense (deprecated in Spark v1.1)")
.action((x, c) => c.copy(dataFormat = x))
arg[String]("<input>")
.text("input path to labeled examples")
.required()
.action((x, c) => c.copy(input = x))
}
parser.parse(args, defaultParams) match {
case Some(params) => run(params)
case _ => sys.exit(1)
}
}
def run(params: Params): Unit = {
val conf = new SparkConf().setMaster("local[2]").setAppName("LinearRegressionExample with $params")
val ssc = new StreamingContext(conf, Seconds(1))
val spark = SparkSession
.builder
.appName(s"LinearRegressionExample with $params")
.getOrCreate()
println(s"LinearRegressionExample with parameters:\n$params")
// Load training and test data and cache it.
val (training: DataFrame, test: DataFrame) = DecisionTreeExample.loadDatasets(params.input,
params.dataFormat, params.testInput, "regression", params.fracTest)
val lir = new LinearRegression()
.setFeaturesCol("features")
.setLabelCol("label")
.setRegParam(params.regParam)
.setElasticNetParam(params.elasticNetParam)
.setMaxIter(params.maxIter)
.setTol(params.tol)
// Train the model
val startTime = System.nanoTime()
val lirModel = lir.fit(training)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
// Print the weights and intercept for linear regression.
println(s"Weights: ${lirModel.coefficients} Intercept: ${lirModel.intercept}")
println("Training data results:")
DecisionTreeExample.evaluateRegressionModel(lirModel, training, "label")
println("Test data results:")
DecisionTreeExample.evaluateRegressionModel(lirModel, test, "label")
spark.stop()
}
}