我想使用以下代码计算预测:
import tensorflow as tf
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
pred = multilayer_perceptron(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables
##trn.txt start
##tst.txt end
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(num_lines_trn/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = bat_x[i*batch_size:(i+1)*batch_size],bat_y[i*batch_size:(i+1)*batch_size]#mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: tst_x, y: tst_y}))
print(sess.run(accuracy, feed_dict={x: tst_x}))
该行
print(sess.run(accuracy, feed_dict={x: tst_x, y: tst_y}))
返回0.80353
,这是批次的准确性。
但是我想获得预测结果。所以我补充说:
print(sess.run(accuracy, feed_dict={x: tst_x}))
但是这一行会返回一个错误:
您必须为占位符张量提供一个值' Placeholder_7'同 dtype float
我该如何解决这个问题?
答案 0 :(得分:9)
如果您想获得模型的预测,您应该这样做:
sess.run(pred, feed_dict={x: tst_x})
您遇到错误,因为您尝试运行sess.run(accuracy, feed_dict={x: tst_x})
,但要计算给定批次的准确性,您需要占位符y
中包含的真实标签,因此您会收到以下错误:< / p>
您必须为占位符张量值'占位符名称
提供值y
'