如何在Python 2.7中同时优化和查找两个方程的系数?

时间:2016-12-11 20:26:17

标签: python python-2.7 scipy curve-fitting

我有数据集,我想适合两个方程式:

y1 = a1 + a2 * T / 2 + a3 * T ^ 2/3 + a4 * T ^ 3/4 + a5 * T ^ 4/5 + a6 / T
y2 = a1 * lnT + a2 * T + a3 * T ^ 2/2 + a4 * T ^ 3/3 + a5 * T ^ 4/4 + a7

两个多项式共享一些参数(a1到a5),所以我想同时拟合这两个方程。

我尝试用scipy.optimize.curve_fit:

来做
import numpy as np
from scipy.optimize import curve_fit

def func(T, a1, a2, a3, a4, a5, a6, a7):
    y1 = a1 + a2 * T / 2 + a3 * T**2 / 3 + a4 * T**3 / 4 + a5 * T**4/5 + a6/T
    y2 = a1*np.log(T) + a2*T + a3 * T**2/2 + a4 * T**3/4 + a5 * T**4/4 + a7
    return np.stack((y1, y2), axis = 1)

T = np.linspace(300, 1000, 20)
ydata_1 = np.array([
    0.02139265,  0.40022353,  0.70653103,  0.95896469,  1.17025634,
    1.34944655,  1.50316659,  1.63641239,  1.75303086,  1.85603601,
    1.94782051,  2.03030092,  2.10501971,  2.17321829,  2.23589026,
    2.29382086,  2.34761661,  2.39772787,  2.44446625,  2.48801814])

ydata_2 = np.array([
    15.73868267,  16.14232408,  16.50633034,  16.83724622,
    17.14016153,  17.41914701,  17.67752993,  17.91807535,
    18.14310926,  18.35460465,  18.55424316,  18.74346017,
    18.92347836,  19.09533317,  19.25989235,  19.41787118,
    19.56984452,  19.71625632,  19.85742738,  19.99356154])

ydata = np.stack((ydata_1, ydata_2), axis = 1)
popt, pconv = curve_fit(f = func, xdata = T, ydata = ydata)

然而我收到错误:

minpack.error: Result from function call is not a proper array of floats.

我甚至不确定这是否是解决问题的正确方法。

2 个答案:

答案 0 :(得分:1)

您可以尝试在二维空间中为y值最小化L_2范数(即最小二乘拟合):

from scipy.optimize import minimize

def func(params):
    a1, a2, a3, a4, a5, a6, a7 = params
    y1 = a1 + a2 * T / 2 + a3 * T**2 / 3 + a4 * T**3 / 4 + a5 * T**4/5 + a6/T
    y2 = a1*np.log(T) + a2*T + a3 * T**2/2 + a4 * T**3/4 + a5 * T**4/4 + a7
    return np.sum((y1 - ydata_1) ** 2 + (y2 - ydata_2) ** 2)

T = np.linspace(300, 1000, 20)
ydata_1 = np.array([
    0.02139265,  0.40022353,  0.70653103,  0.95896469,  1.17025634,
    1.34944655,  1.50316659,  1.63641239,  1.75303086,  1.85603601,
    1.94782051,  2.03030092,  2.10501971,  2.17321829,  2.23589026,
    2.29382086,  2.34761661,  2.39772787,  2.44446625,  2.48801814])

ydata_2 = np.array([
    15.73868267,  16.14232408,  16.50633034,  16.83724622,
    17.14016153,  17.41914701,  17.67752993,  17.91807535,
    18.14310926,  18.35460465,  18.55424316,  18.74346017,
    18.92347836,  19.09533317,  19.25989235,  19.41787118,
    19.56984452,  19.71625632,  19.85742738,  19.99356154])

# choose reasonable values for your 7 parameters here,
# i.e. close to the "right" answer, this may take a few tries
first_guess = [a1_0, a2_0, a3_0, a4_0, a5_0, a6_0, a7_0]  

# here we run the minimisation
res = minimize(func, first_guess)

# this is an array of your best fit values for a1-a7
best_fit = res.x

但是,似乎@Stelios是正确的,因为你很难适应你的特定型号。

答案 1 :(得分:1)

(扩展评论)

a)curve_fit用于根据单个数据集拟合单个函数。在您的情况下,您有两个基于两个数据集拟合的函数。这原则上需要从头开始设置优化问题,即定义单个目标函数(有或没有约束)。例如,目标函数可以是两个拟合的平方残差的总和。然后,您将使用scipy.optimimize.minimize等优化求解器来查找最佳变量。

b)您的模型(拟合函数)可能会在优化中引入数值困难。例如,a5的变量a6y1分别是T**41/T的因子,T=10**3对应10**12的值{1}}和10**-3。这是一个巨大的规模差异,接近硬件精度,这表明你应该重新考虑你的模型。