我对编程比较陌生,并且我不希望这个算法在运行时间方面特别高效,而只是尝试复制Karatsuba算法并使其工作。
我尝试过很多数字和小数字(比如y = 40004009343254, x = 40004001343234)工作正常,当数字大小增加时(如y = 4000400934325423423,x = 4000400134323432423),算法停止正常工作并返回类似但不正确的答案。
非常感谢任何可能出错的线索!
注意:这个帖子不是关于效率,而是关于获得正确的结果。也就是说,关于效率的评论也将被考虑在内并得到赞赏。
CODE :
y = 4000400934325423423
x = 4000400134323432423
def firsthalf(array):
firsthalf = array[:len(array)/2]
return firsthalf
def secondhalf(array):
secondhalf = array[len(array)/2:]
return secondhalf
def arrayjoint(array):
jointarray = long(''.join(map(str,array)))
return jointarray
def karatsuba(x,y):
if len(str(x)) == 0 or len(str(y)) == 0:
return "Can't multiply by a NULL value!"
if x < 10 or y < 10:
return x * y
x_array = [long(i) for i in str(x)]
y_array = [long(i) for i in str(y)]
firsthalf_xarray = firsthalf(x_array)
secondhalf_xarray = secondhalf(x_array)
firsthalf_yarray = firsthalf(y_array)
secondhalf_yarray = secondhalf(y_array)
half_size = max(len(secondhalf_yarray), len(secondhalf_xarray))
firsthalf_x = arrayjoint(firsthalf_xarray)
secondhalf_x = arrayjoint(secondhalf_xarray)
firsthalf_y = arrayjoint(firsthalf_yarray)
secondhalf_y = arrayjoint(secondhalf_yarray)
sum_x = firsthalf_x + secondhalf_x
sum_y = firsthalf_y + secondhalf_y
first = karatsuba(firsthalf_x,firsthalf_y)
second = karatsuba(sum_x, sum_y)
third = karatsuba(secondhalf_x,secondhalf_y)
return first * 10 ** (2 * half_size) + ((second - first - third) * (10 ** half_size)) + third
result = karatsuba(x,y)
result_correct = x*y
result = str(result)
result_correct = str(result_correct)
file = open("result.txt", "w")
file.write(str(result) + "\n" + str(result_correct))
file.close
答案 0 :(得分:1)
浮点数不是问题,因为Python有bignums。
问题在于,当输入具有不同的长度时,您将它们分成不同的位置,这会破坏Karatsuba算法下的代数。通过在索引-half_size
处进行拆分(即,后半部分具有half_size
个数字),我们确保10**half_size
是正确的基础。试试这个:
def digits_to_long(x_array):
return long(''.join(x_array)) if x_array else 0L
def karatsuba(x, y):
if x < 10 or y < 10:
return x * y
x_array = str(x)
y_array = str(y)
half_size = max(len(x_array), len(y_array)) // 2
firsthalf_x = digits_to_long(x_array[:-half_size])
secondhalf_x = digits_to_long(x_array[-half_size:])
firsthalf_y = digits_to_long(y_array[:-half_size])
secondhalf_y = digits_to_long(y_array[-half_size:])
sum_x = firsthalf_x + secondhalf_x
sum_y = firsthalf_y + secondhalf_y
first = karatsuba(firsthalf_x, firsthalf_y)
second = karatsuba(sum_x, sum_y)
third = karatsuba(secondhalf_x, secondhalf_y)
return first * 10**(2 * half_size) + (
(second - first - third) * (10**half_size)) + third
import random
for i in range(10000):
x = random.randrange(10**18)
y = random.randrange(10**18)
assert karatsuba(x, y) == x * y