我想计算pandas中多索引数据框的累积百分比,但却无法使其工作。
import pandas as pd
to_df = {'domain': {(12, 12): 2, (14, 14): 1, (15, 15): 2, (15, 17): 2, (17, 17): 1},
'time': {(12, 12): 1, (14, 14): 1, (15, 15): 2, (15, 17): 1, (17, 17): 1},
'weight': {(12, 12): 3,
(14, 14): 4,
(15, 15): 1,
(15, 17): 2,
(17, 17): 5}}
df = pd.DataFrame.from_dict(to_df)
domain time weight
12 12 2 1 3
14 14 1 1 4
15 15 2 2 1
17 2 1 2
17 17 1 1 5
df = df.groupby(['time', 'domain']).apply(
pd.DataFrame.sort_values, 'weight', ascending=True)
cumsum()按预期工作
df["cum_sum_time_domain"] = df.groupby(['time', 'domain'])['weight'].cumsum()
domain time weight cum_sum_time_domain
time domain
1 1 14 14 1 1 4 4
17 17 1 1 5 9
2 15 17 2 1 2 2
12 12 2 1 3 5
2 2 15 15 2 2 1 1
运行命令本身可以正常工作
df.groupby(['time', 'domain']).weight.sum()
df.groupby(['time', 'domain'])['weight'].sum()
然而,这两项任务突然产生了NaNs'
df["sum_time_domain"] = df.groupby(['time', 'domain']).weight.sum()
df
df["sum_time_domain"] = df.groupby(['time', 'domain'])['weight'].sum()
df
将两者结合起来会产生错误:'合并多个索引上的多个级别重叠并未实现'
df["cum_perc_time_domain"] = 100 * df.groupby(['time', 'domain'])['weight'].cumsum() / df.groupby(
['time', 'domain'])['weight'].sum()
答案 0 :(得分:1)
我认为您sum
需要transform
。另外,对于排序groupby
不是必需的,请仅使用sort_values
:
df = df.sort_values(['time','domain','weight'])
print (df.groupby(['time', 'domain']).weight.transform('sum'))
14 14 9
17 17 9
15 17 5
12 12 5
15 15 1
Name: weight, dtype: int64
df["cum_perc_time_domain"] = 100 * df.groupby(['time', 'domain'])['weight'].cumsum() /
df.groupby(['time', 'domain']).weight.transform('sum')
print (df)
domain time weight cum_perc_time_domain
14 14 1 1 4 44.444444
17 17 1 1 5 100.000000
15 17 2 1 2 40.000000
12 12 2 1 3 100.000000
15 15 2 2 1 100.000000