我遇到一个我无法理解的问题,这让我感到非常疯狂,因为我无法找到解决方案。
我在MATLAB和Python上做了一些矩阵乘法。想象一下,我有两个矩阵X和W,我想将它们相乘。
在Python中我使用numpy,我这样做:
np.dot(X, W)
在MATLAB中我做:X*W
Python的结果就是这个:
[[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -1.79812377e-01 1.26046711e-02 -3.62915515e-01 -2.28314197e-01
9.41395740e-02 1.95587346e-01 4.00916792e-02 4.61162174e-01
-1.54852385e-01 2.07742254e-01]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]
[ -7.25949823e-04 -9.78931123e-04 -2.20816949e-05 -2.52954078e-03
-2.53120361e-03 -3.53331962e-03 -3.62886737e-03 -4.73257530e-03
-4.44088094e-05 -4.29659134e-03]]
MATLAB上的结果:
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
0.4886 0.4726 0.7100 0.9864 0.6025 0.5887 0.9668 0.4671 0.2921 0.9398
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
-0.0007 -0.0010 -0.0000 -0.0025 -0.0025 -0.0035 -0.0036 -0.0047 -0.0000 -0.0043
我想知道为什么第二行不同。
X
和W
矩阵位于以下位置:
PYTHON:
W = np.array([[ 0.16157533,0.17941953,0.11275408,0.4501205,
0.38326338,0.49979055, 0.56796654,0.61752605,0.05109819,0.63738453],
[0.51000276,0.35098523,0.81868132,0.92687111,0.38791804,0.29996999,
0.70714705,0.00453668,0.34100865,0.55859484],
[0.31635177,0.99422952,0.81529534,0.42029186,0.58907765,0.20727667,
0.75791727,0.07188677,0.27872427,0.92982283]])
X
[[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ 7.38717964e-01 -6.55268545e-01 1.10692571e-01]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]
[ -7.67758224e-03 9.73418978e-04 5.72517607e-05]]
MATLAB
W = [0.16157533 0.17941953 0.11275408 0.4501205 0.38326338 0.49979055 0.56796654 0.61752605 0.05109819 0.63738453;0.51000276 0.35098523 0.81868132 0.92687111 0.38791804 0.29996999 0.70714705 0.00453668 0.34100865 0.55859484; 0.31635177 0.99422952 0.81529534 0.42029186 0.58907765 0.20727667 0.75791727 0.07188677 0.27872427 0.92982283];
Xf = [-7.67758224e-03 9.73418978e-04 5.72517607e-05; 7.38717964e-01 6.55268545e-01 1.10692571e-01; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05; -7.67758224e-03 9.73418978e-04 5.72517607e-05];
答案 0 :(得分:2)
在Python中,X
的第七个值是-6.55268545e-01
(否定)。
在Matlab中,xf
的第七个值是6.55268545e-01
(正数)。
可能还有其他差异,我在第一次发现时就停止了搜索。