已经两天了,我仍然无法弄清楚为什么我的CUDA矩阵乘法的实现与MATLAB中产生的结果不同。
CUDA内核:A(200x60000)= W(200x784)*数据(784x6000)
__global__ void CalculateA(Matrix W, Matrix Data, Matrix A)
{
int Row = blockIdx.y * blockDim.y + threadIdx.y;
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if ((Row < W.row) && (Col < Data.col)){
float Cvalue = 0.0;
for (int i = 0; i < W.col; ++i){
Cvalue += W.elements[Row*W.col+i] * Data.elements[i*Data.col+Col];
}
A.elements[Row*A.col+Col] = Cvalue;
}
}
调用内核:
void myFunc(Matrix W1, Matrix data){
Matrix d_W1, d_data, d_a2, a2;
size_t size;
a2.row = W1.row; d_a2.row = a2.row;
a2.col = data.col; d_a2.col = a2.col;
size = a2.col*a2.row*sizeof(float);
cudaMalloc(&d_a2.elements,size);
d_W1.row = W1.row; d_W1.col = W1.col;
size = W1.col*W1.row*sizeof(float);
cudaMalloc(&d_W1.elements,size);
cudaMemcpy(d_W1.elements,W1.elements,size,cudaMemcpyHostToDevice);
d_data.col = data.col; d_data.row = data.row;
size = data.row*data.col*sizeof(float);
cudaMalloc(&d_data.elements,size);
cudaMemcpy(d_data.elements,data.elements,size,cudaMemcpyHostToDevice);
dim3 dimGrid(data.col/32 + 1, W1.row/32 + 1, 1);
dim3 dimBlock(32, 32, 1);
CalculateA<<<dimGrid, dimBlock>>>(d_W1, d_data, d_a2);
a2.elements = new float [a2.row*a2.col];
cudaMemcpy(a2.elements,d_a2.elements,sizeof(float)*a2.row*a2.col,cudaMemcpyDeviceToHost);
printf("\nA2 first and last member %f - %f\n",a2.elements[0],a2.elements[a2.row*a2.col-1]);
}
结果差异不小,例如CUDA代码的第一个和最后一个元素是0.011322和-0.179534,但在MATLAB中的乘法结果为0.4280和0.0056。
这就是我在MATLAB中的表现:
>> size(W1) ans = 200 784
>> size(data) ans = 784 60000
>> z2=W1*data;
>> size(z2) ans = 200 60000
>> z2 = z2(:);
>> z2(1) ans = 0.4280
>> z2(200*60000)ans = 0.0056
答案 0 :(得分:2)
您发布的代码没有任何问题。如果我将内核和函数扩展为一个完整的运行示例,如下所示:
#include <iostream>
struct Matrix
{
int row;
int col;
float *elements;
__device__ __host__
float& operator()(int r, int c) { return elements[r*col + c]; };
};
__global__ void CalculateA(Matrix W, Matrix Data, Matrix A)
{
int Row = blockIdx.y * blockDim.y + threadIdx.y;
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if ((Row < W.row) && (Col < Data.col)){
float Cvalue = 0.0;
for (int i = 0; i < W.col; ++i){
Cvalue += W.elements[Row*W.col+i] * Data.elements[i*Data.col+Col];
}
A.elements[Row*A.col+Col] = Cvalue;
}
}
void myFunc(Matrix W1, Matrix data)
{
Matrix d_W1, d_data, d_a2, a2;
size_t size;
a2.row = W1.row; d_a2.row = a2.row;
a2.col = data.col; d_a2.col = a2.col;
size = a2.col*a2.row*sizeof(float);
cudaMalloc(&d_a2.elements,size);
d_W1.row = W1.row; d_W1.col = W1.col;
size = W1.col*W1.row*sizeof(float);
cudaMalloc(&d_W1.elements,size);
cudaMemcpy(d_W1.elements,W1.elements,size,cudaMemcpyHostToDevice);
d_data.col = data.col; d_data.row = data.row;
size = data.row*data.col*sizeof(float);
cudaMalloc(&d_data.elements,size);
cudaMemcpy(d_data.elements,data.elements,size,cudaMemcpyHostToDevice);
dim3 dimGrid(data.col/32 + 1, W1.row/32 + 1, 1);
dim3 dimBlock(32, 32, 1);
CalculateA<<<dimGrid, dimBlock>>>(d_W1, d_data, d_a2);
a2.elements = new float [a2.row*a2.col];
cudaMemcpy(a2.elements,d_a2.elements,sizeof(float)*a2.row*a2.col,cudaMemcpyDeviceToHost);
for(int j=0; j<a2.col; ++j) {
for(int i=0; i<a2.row; ++i) {
std::cout << a2(i,j) << " ";
}
std::cout << std::endl;
}
}
int main(void)
{
float a[6] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f };
float b[6] = { 0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f};
Matrix W1; W1.row=2; W1.col=3; W1.elements = &a[0];
Matrix Data; Data.row=3; Data.col=2; Data.elements = &b[0];
myFunc(W1, Data);
return 0;
}
然后运行它,我明白了:
>nvcc -arch=sm_21 -Xptxas="-v" -m32 matrix.cu
matrix.cu
tmpxft_000014f4_00000000-5_matrix.cudafe1.gpu
tmpxft_000014f4_00000000-10_matrix.cudafe2.gpu
matrix.cu
ptxas : info : 132 bytes gmem, 28 bytes cmem[14]
ptxas : info : Compiling entry function '_Z10CalculateA6MatrixS_S_' for 'sm_21'
ptxas : info : Function properties for _Z10CalculateA6MatrixS_S_
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas : info : Used 14 registers, 68 bytes cmem[0]
tmpxft_000014f4_00000000-5_matrix.cudafe1.cpp
tmpxft_000014f4_00000000-15_matrix.ii
>cuda-memcheck a.exe
========= CUDA-MEMCHECK
2.2 4.9
2.8 6.4
========= ERROR SUMMARY: 0 errors
这是假定列主要排序(这是Matlab约定)的点积的正确答案。
因此,如果您的结果不一致,那是因为您没有向我们展示过。有一种可能是您的测试问题太大(内核效率低下),如果您在显示GPU上运行它,您的程序将达到显示驱动程序监视程序计时器限制并在内核完成运行之前被杀死。另请注意,您有否 CUDA API错误检查,因此您可能会遇到运行时错误,这会导致内核停止运行甚至根本无法运行,但您根本就没有注意到因为缺乏错误检查。