嘿所有人,正在开发C ++小游戏,“连接3”。这就像Connect 4,除了我们只需要3的匹配来赢得比赛。我将我的电路板存储在一个2D矢量中,该矢量包含整数。
vector< vector<int> > vector2d;
我将一个“X”存储为1,将“O”存储为-1,其中0表示空白。到目前为止似乎工作正常。
因此,在我对抗计算机的算法中,它找到了最好的移动方式。我已经完成了算法,但它需要知道何时遇到“基本案例”。 (它是递归的。)基本情况是:
检查电路板是否已满是很容易的。我只是迭代,看看是否有任何空格是“0”。如果是,则电路板未满。但在我检查之前,我需要看看是否有人连续3次,这是我遇到问题的地方。我能想到做到这一点的唯一方法是大而复杂,通过董事会3次不同,寻找3的水平匹配,3的垂直匹配和3的对角线匹配。我甚至不确定从哪里开始这样做,我希望有更好的方法来做到这一点。非常感谢帮助!
另外,不确定我是否允许使用Boost,我还没有到目前为止,我不想使用它。 (不确定学校的电脑是否有它)。
编辑:主板不需要3乘3.它可以是1乘7,7乘7或任何大小。如果它不是合法的大小(0,0),我的代码将告诉用户,但任何其他板应该工作。我已经使用矢量大小来查看电路板的大小。
答案 0 :(得分:8)
您不必每次都检查整个电路板。只有新作品才有所作为,所以你只需要检查包含新作品的最终条件。您需要检查8个不同的方向,但每两个方向都在同一条线上,应该一起检查。方向可以定义为(delta_X,delta_Y)对:(1,0),(0,1),(1,1),(1,-1)。您的代码应该遍历每个方向(如Leonid的代码中所示)并尝试计算与新部分具有相同值的多个部分。然后它应该从当前方向以(-x,-y)的相反方向移动,并计算这些部分。如果计算的棋子数是N-1(新棋子已经计算在内)那么你就有了胜利者。
答案 1 :(得分:7)
因此,假设您使用的是3x3电路板。可以形成有限数量的获胜线。
1 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0
现在,如果您按照以下方式为每个电路板位置分配一个位:
1 2 4
8 16 32
64 128 256
现在你可以看出8条获胜线如下:
1 | 8 | 64 = 73
1 | 2 | 4 = 7
1 | 16 | 256 = 273
4 | 16 | 64 = 84
4 | 32 | 256 = 292
8 | 16 | 32 = 56
64 | 128 | 256 = 448
2 | 16 | 128 = 146
现在,如果您在给定玩家所拥有的任何位置存储1,您可以轻松地逐步浏览上述每个“解决方案”,并针对上述8个值进行测试。
假设两名球员有以下位置:
1 1 0 0 0 1
1 0 0 0 1 1
1 0 1 0 1 0
如果您按照以下方式输入“解决方案”的值,则
1 | 2 | 8 | 64 | 256 = 331
4 | 16 | 32 | 128 = 180
所以我们知道winnign线是1 | 8 | 64 = 73行所以我们可以使用一点点测试,如下所示
331 & 73 = 73
180 & 73 = 0
所以我们可以很容易地检测出玩家1连续3个并且因为“和”不是0而有一个。
这意味着你可以计算最多8个步骤的胜利者(即根据8个可能的答案检查两个玩家的总数)。
显然,当你变得越来越大时复杂度会增加,当你用完比特时看起来会更复杂(看看std :: bitset,例如如何处理它)但是最后的游戏总是需要更少的迭代检查比蛮力方法。显然,设置需要花费更多的时间,但你只计算每种电路板类型的最终游戏条件,以便时间在几个游戏中分摊。
无论如何......多数民众赞成我怎么做:D
答案 2 :(得分:3)
从算法复杂性的角度来看,以下C ++ O(N*M)
解决方案是最好的,因为我们需要在最坏的情况下检查电路板的每个单元。它遍历棋盘中的所有单元格(i
和j
),尝试向4个方向(k
),并从那里检查3个单元格(l
)方向k
被占用并且相等。
vector<vector<int> > board(n, vector<int>(m)); // initialize
/* down down-right right up-right */
int di[] = {1, 1, 0, -1 }; // four directions i coordinate
int dj[] = {0, 1, 1, 1 }; // four directions j coordinate
for (int i = 0; i < n; i++) { // for each row
for (int j = 0; j < m; j++) { // for each column
for (int k = 0; k < 4; k++) { // for each direction
int ii = i, jj = j;
bool found = true;
if (board[ii][jj] == 0) continue; // empty space
for (int l = 1; l < 3 && found; l++) { // need 3 in a row
int iii = ii + di[k], jjj = jj + dj[k];
if (iii < 0 || iii >= n) found = false, continue; // off bounds
if (jjj < 0 || jjj >= n) found = false, continue; // off bounds
if (board[iii][jjj] != board[ii][jj]) found = false;
}
if (found) {
printf("Hurray!\n");
return;
}
}
}
}
答案 3 :(得分:1)
我制作了这样的游戏,实际上我用C ++做过的第一件事(谁需要你好世界:P)
如果他们愿意,每个人都可以使用它。
只是不要忘记它是我的第一个C ++的东西,它肯定没有正确编码:P但它有一些很好的C ++之类的东西。但是在那里有一个100%优化的搜索算法,它检查绝对最少的所需排列量,以连续三次检查具有大量评论和ASCII艺术的胜利条件。这可能非常有用。
哦差点忘了提到,这是一个控制台应用程序东西(黑屏DOS envi,无论它叫什么)。它有一个AI(如果这是我的最新版本)应该做得很好。并且网格是动态构建的(这是很难的部分)你可以连续玩3个,但是最大的网格是20x20(我发现了蹩脚游戏,比重力连续4个更有趣)
你走了:
// DrieOpEenRij.cpp : Defines the entry point for the console application.
#include "stdafx.h"
#include <iostream>
#include <string>
#include <typeinfo>
using namespace std;
typedef unsigned short USHORT;
//USE ONLY IN A SQUARE GRID
//This method checks a win for the minimimum amount of spaces covering 100% amount of the grid
//It has 100% coverage and close to 0% overhead, discrimination between who to check for is required and
//so currentMove char is required to check for win on 'H' human and 'C' Computer
void CheckForWin(const char* Grid_ptr , const USHORT GridSize , const USHORT GridWidth ,bool &humanWin, bool &computerWin, const char currentMove)
{
//check for an x from 1-end of array
//for all x's check if that makes a 3 line once per linetype
//check for horizontal win (dont get overhead on edges)
//A non square grid will have been detected by now
const USHORT rowStart = 0;
const USHORT rowEnd = GridWidth-1;
USHORT passRowCounter = 1;
const USHORT Side = GridWidth;
const USHORT cond1 = rowEnd-2;
const USHORT cond2 = GridSize-Side*2;
//Check for all human win options ( after a human move )
if (currentMove == 'H')
{
//Check for human win code
//Check all array slots for an occurence of 'X'
for(USHORT i = 0; i < GridSize; i++)
{
//Local stack variables, optimizations for iterations in loops and if statements,
//also for readability, this is (only efficient and) done only when it is guaranteed
//to be used in every for jump.
USHORT iModSide = i % Side;
USHORT SideMinTwo = Side - 2;
USHORT SidePlusTwo = Side + 2;
USHORT iPlusSide = i + Side;
USHORT iPlusSideTimesTwo = i + Side * 2;
USHORT iPlusOne = i + 1;
USHORT iPlusTwo = i + 2;
//If an X is found evaluate a win scenario
if (Grid_ptr[i] == 'X')
{
//For each row -->
if (iModSide < SideMinTwo)
{
//Check horizontal win from left to right
if (Grid_ptr[i + 1] == 'X' && Grid_ptr[i + 2] == 'X')
{
humanWin = true;
break;
}
}
//For the two values under the 'X' (colomn wise) check for 'X''X'
if (iPlusSideTimesTwo < GridSize)
{
if(Grid_ptr[iPlusSide] == 'X' && Grid_ptr[iPlusSideTimesTwo] == 'X')
{
humanWin = true;
break;
}
}
//CHECK FOR DIAGONAL WIN FROM TOP LEFT TO DOWN RIGHT IN ALL POSSIBLE+LEGAL SLOTS!
// [X] [X] [?] [?] This illustration shows that checking only at X will suffice
// [X] [X] [?] [?] for this specific check in screening for all Top Left --> Down Right
// [?] [?] [?] [?] diagonal wins, similarly the Top Right --> Down Left is done mirrored
// [?] [?] [?] [?] All other wins using this vector are impossible!
// Using this amount of conditions to find it saves a lot of searching and with it time
if (iPlusSideTimesTwo < GridSize && iModSide < SideMinTwo)
{
if (Grid_ptr[i+Side+1] == 'X' && Grid_ptr[iPlusSideTimesTwo+2] == 'X')
{
humanWin = true;
break;
}
}
//CHECK FOR DIAGONAL WIN FROM TOP LEFT TO DOWN RIGHT IN ALL POSSIBLE+LEGAL SLOTS!
// [?] [?] [Y] [Y] This illustration shows that checking only at Y will suffice
// [?] [?] [Y] [Y] for this specific check in screening for all Top Right --> Down Left
// [?] [?] [?] [?] diagonal wins, similarly the Top Left --> Down Right is done mirrored
// [?] [?] [?] [?] This because all other wins using this vector are impossible!
// Using this amount of conditions to find it saves a lot of searching and with it time
if (i % Side > 1 && i + Side*2-2 < GridSize)
{
if (Grid_ptr[i+Side-1] == 'X' && Grid_ptr[i+Side*2-2] == 'X')
{
humanWin = true;
break;
}
}
} //end if arrayvalue is 'X'
} //end for each value in array
} //end if currentMove 'H'
else if (currentMove == 'C')
{
//Check for human win code
//Check all array slots for an occurence of 'X'
for(USHORT i = 0; i < GridSize; i++)
{
//Local stack variables, optimizations for iterations in loops and if statements,
//also for readability, this is (only efficient and) done only when it is guaranteed
//to be used in every for jump.
USHORT iModSide = i % Side;
USHORT SideMinTwo = Side - 2;
USHORT SidePlusTwo = Side + 2;
USHORT iPlusSide = i + Side;
USHORT iPlusSideTimesTwo = i + Side * 2;
USHORT iPlusOne = i + 1;
USHORT iPlusTwo = i + 2;
//If an X is found evaluate a win scenario
if (Grid_ptr[i] == 'O')
{
//For each row -->
if (iModSide < SideMinTwo)
{
//Check horizontal win from left to right
if (Grid_ptr[i + 1] == 'O' && Grid_ptr[i + 2] == 'O')
{
computerWin = true;
break;
}
}
//For the two values under the 'O' (colomn wise) check for 'O''O'
if (iPlusSideTimesTwo < GridSize)
{
if(Grid_ptr[iPlusSide] == 'O' && Grid_ptr[iPlusSideTimesTwo] == 'O')
{
computerWin = true;
break;
}
}
//CHECK FOR DIAGONAL WIN FROM TOP LEFT TO DOWN RIGHT IN ALL POSSIBLE+LEGAL SLOTS!
// [X] [X] [?] [?] This illustration shows that checking only at X will suffice
// [X] [X] [?] [?] for this specific check in screening for all Top Left --> Down Right
// [?] [?] [?] [?] diagonal wins, similarly the Top Right --> Down Left is done mirrored
// [?] [?] [?] [?] All other wins using this vector are impossible!
// Using this amount of conditions to find it saves a lot of searching and with it time
if (iPlusSideTimesTwo < GridSize && iModSide < SideMinTwo)
{
if (Grid_ptr[i+Side+1] == 'O' && Grid_ptr[iPlusSideTimesTwo+2] == 'O')
{
computerWin = true;
break;
}
}
//CHECK FOR DIAGONAL WIN FROM TOP LEFT TO DOWN RIGHT IN ALL POSSIBLE+LEGAL SLOTS!
// [?] [?] [Y] [Y] This illustration shows that checking only at Y will suffice
// [?] [?] [Y] [Y] for this specific check in screening for all Top Right --> Down Left
// [?] [?] [?] [?] diagonal wins, similarly the Top Left --> Down Right is done mirrored
// [?] [?] [?] [?] This because all other wins using this vector are impossible!
// Using this amount of conditions to find it saves a lot of searching and with it time
if (iPlusSideTimesTwo+2 < GridSize && iModSide < SidePlusTwo)
{
if (Grid_ptr[i+Side-1] == 'O' && Grid_ptr[i+Side*2-2] == 'O')
{
computerWin = true;
break;
}
}
} //end if arrayvalue is 'O'
} //end for each value in array
}// else if currentMove 'C'
} //end method
//useAI(char* Grid_ptr) { }
//weighGrid (char* Grid_ptr) { for (USHORT i = 0; i < GridSize(find out); i++) {} }
void PrintGrid(char* Grid_ptr, USHORT GridWidth, USHORT GridHeight, USHORT GridSize)
{
//Abort this method if the Grid is not Square
if (GridWidth != GridHeight)
{
cout << "Warning! \n\nGrid is not square. This method will likely fail!" << endl;
cout << "Aborting method!" << endl;
cout << "Press a key to return to program";
}
else
{
//Since this code block's applicable to a square grid
//Width or Height is not relevant, both should work
//I have chosen to stick with Width everywhere.
USHORT rowStart = 0;
USHORT rowEnd = GridWidth-1;
USHORT passRowCounter = 1;
USHORT Side = GridSize / GridHeight;
for(USHORT i = 0; i < Side; i++)
{
//GO TO NEXT ROW CODE
rowEnd = Side * passRowCounter;
passRowCounter++;
//PRINT ALL IN THIS ROW
for (USHORT j = rowStart; j < rowEnd; j++)
{
cout << Grid_ptr[j];
}
rowStart = rowEnd;
cout << "\n";
}
}
}
void useAI(char* Grid_ptr, USHORT GridSize, USHORT GridWidth)
{
//Check all values in the array
//If the value is '?' weigh the priority
//else continue
//Weighing the priority
//If ('O' Present in legal ranges) add prio +1
//The AI Will function on this concept
//All array slots have a weight, the highest weight means the best position
//From top prio to lowest prio that means -->
//WIN IN ONE MOVE (weight + 50)
//NOT LOSE IN ONE MOVE (weight + 15)
//BLOCK ENEMY + LINK UP OWN ( Equal prio but stacks so both matter ) weight +1
//These weights are determined using 8 directional vectors sprouting from all 'X' and 'O' locations in the grid
//In it's path if it encounters on loc 1 'X' loc 2 + weight = 50 , and vice versa, else +1 for all 8 vectors
//Create a weightgrid to store the data
USHORT* WeightGrid_ptr = new USHORT[GridSize];
USHORT* fattest_ptr = new USHORT(0);
USHORT* fattestIndex_ptr = new USHORT(0);
USHORT Side = GridWidth;
//Suggestion for optimization , make a forumula table to play all 8 vectors instead
//Per vector u need Condition for the direction first space and next space. 24 statements in a list
//A bit complex and harder to read so for now went the east 8 vectors copy pasting. But aware of the
//solution none-the-less! Unfortunatly though it seems like a maze of code, it is well documented and
//it's length is over 50% due to optimizations.
for(USHORT i = 0; i < GridSize; i++)
{
if (Grid_ptr[i] == 'X')
{
//CHECK X --> Mid Right Vector
//If within allowed parameters
if(i % Side < Side-2)
{
if(Grid_ptr[i+1] == '?' && Grid_ptr[i+2] == '?')
{
WeightGrid_ptr[i+1] += 1;
WeightGrid_ptr[i+2] += 1;
}
else if(Grid_ptr[i+1] == 'X')
{
WeightGrid_ptr[i+2] += 15;
}
else if (Grid_ptr[i+2] == 'X')
{
WeightGrid_ptr[i+1] += 15;
}
}
//CHECK X --> Down Right Vector
//If within allowed parameters
if (i % Side < Side -2 && i + Side*2 < GridSize)
{
if (Grid_ptr[i+Side+1] == '?' && Grid_ptr[i+Side*2+2] == '?')
{
WeightGrid_ptr[i+Side+1] += 1;
WeightGrid_ptr[i+Side*2+2] += 1;
}
else if(Grid_ptr[i+Side+1] == 'X')
{
WeightGrid_ptr[i+Side*2+2] += 15;
}
else if (Grid_ptr[i+Side*2+2] == 'X')
{
WeightGrid_ptr[i+Side+1] += 15;
}
}
//CHECK X --> Down Mid Vector
//If within allowed paramaters
if (i + Side*2 < GridSize)
{
if (Grid_ptr[i+Side] == '?' && Grid_ptr[i+Side*2] == '?')
{
WeightGrid_ptr[i+Side] += 1;
WeightGrid_ptr[i+Side*2] += 1;
}
else if (Grid_ptr[i+Side] == 'X')
{
WeightGrid_ptr[i+Side*2] += 15;
}
else if (Grid_ptr[i+Side*2] == 'X')
{
WeightGrid_ptr[i+Side] += 15;
}
}
//CHECK X --> Down Left Vector
//If within allowed paramaters
if(i % Side > 1 && i + Side*2 < GridSize)
{
if (Grid_ptr[i + Side*2-1] == '?' && i + Side*2-2 == '?')
{
WeightGrid_ptr[i+Side*2-1] += 1;
WeightGrid_ptr[i+Side*2-2] += 1;
}
else if(Grid_ptr[i + Side*2-2] == 'X')
{
WeightGrid_ptr[i+Side*2-1] += 15;
}
else if(Grid_ptr[i+Side*2-1] == 'X')
{
WeightGrid_ptr[i+Side*2-2] += 15;
}
}
//CHECK X --> Mid Left Vector
//If within allowed parameters
if(i % Side > 1)
{
if (Grid_ptr[i-1] == '?' && Grid_ptr[i-2] == '?')
{
WeightGrid_ptr[i-1] += 1;
WeightGrid_ptr[i-2] += 1;
}
else if(Grid_ptr[i-1] == 'X')
{
WeightGrid_ptr[i-2] += 15;
}
else if(Grid_ptr[i-2] == 'X')
{
WeightGrid_ptr[i-1] += 15;
}
}
//CHECK X --> Top Left Vector
//If within allowed parameters
if( (i) % (Side > 1) && i > Side*2)
{
if (Grid_ptr[i-Side-1] == '?' && Grid_ptr[i-Side*2-2] == '?')
{
WeightGrid_ptr[i-Side-1] += 1;
WeightGrid_ptr[i-Side*2-2] += 1;
}
else if (Grid_ptr[i-Side-1] == 'X')
{
WeightGrid_ptr[i-Side*2-2] += 15;
}
else if (Grid_ptr[i-Side*2-2] == 'X')
{
WeightGrid_ptr[i-Side-1] += 15;
}
}
//CHECK X --> Mid Top Vector
//If within allowed parameters
if (i > Side*2)
{
if(Grid_ptr[i + Side] == '?' && Grid_ptr[i + Side*2] == '?')
{
WeightGrid_ptr[i + Side] += 1;
WeightGrid_ptr[i + Side*2] += 1;
}
else if(Grid_ptr[i + Side] == 'X')
{
WeightGrid_ptr[i + Side*2] += 15;
}
else if (Grid_ptr[i + Side*2] == 'X')
{
WeightGrid_ptr[i + Side] += 15;
}
}
} //end if 'X' detected
else if (Grid_ptr[i] == 'O')
{
//CHECK 8 VECTORS
//Add weights
//CHECK O --> Mid Right Vector
//If within allowed parameters
if(i % Side < Side-2)
{
if(Grid_ptr[i+1] == '?' && Grid_ptr[i+2] == '?')
{
WeightGrid_ptr[i+1] += 1;
WeightGrid_ptr[i+2] += 1;
}
else if(Grid_ptr[i+1] == 'O')
{
WeightGrid_ptr[i+2] += 50;
}
else if (Grid_ptr[i+2] == 'O')
{
WeightGrid_ptr[i+1] += 50;
}
}
//CHECK O --> Down Right Vector
//If within allowed parameters
if (i % Side < Side -2 && i + Side*2 < GridSize)
{
if (Grid_ptr[i+Side+1] == '?' && Grid_ptr[i+Side*2+2] == '?')
{
WeightGrid_ptr[i+Side+1] += 1;
WeightGrid_ptr[i+Side*2+2] += 1;
}
else if(Grid_ptr[i+Side+1] == 'O')
{
WeightGrid_ptr[i+Side*2+2] += 50;
}
else if (Grid_ptr[i+Side*2+2] == 'O')
{
WeightGrid_ptr[i+Side+1] += 50;
}
}
//CHECK O --> Down Mid Vector
//If within allowed paramaters
if (i + Side*2 < GridSize)
{
if (Grid_ptr[i+Side] == '?' && Grid_ptr[i+Side*2] == '?')
{
WeightGrid_ptr[i+Side] += 1;
WeightGrid_ptr[i+Side*2] += 1;
}
else if (Grid_ptr[i+Side] == 'O')
{
WeightGrid_ptr[i+Side*2] += 50;
}
else if (Grid_ptr[i+Side*2] == 'O')
{
WeightGrid_ptr[i+Side] += 50;
}
}
//CHECK O --> Down Left Vector
//If within allowed paramaters
if(i % Side > 1 && i + Side*2 < GridSize)
{
if (Grid_ptr[i + Side*2-1] == '?' && i + Side*2-2 == '?')
{
WeightGrid_ptr[i+Side*2-1] += 1;
WeightGrid_ptr[i+Side*2-2] += 1;
}
else if(Grid_ptr[i + Side*2-2] == 'O')
{
WeightGrid_ptr[i+Side*2-1] += 50;
}
else if(Grid_ptr[i+Side*2-1] == 'O')
{
WeightGrid_ptr[i+Side*2-2] += 50;
}
}
//CHECK O --> Mid Left Vector
//If within allowed parameters
if(i % Side > 1)
{
if (Grid_ptr[i-1] == '?' && Grid_ptr[i-2] == '?')
{
WeightGrid_ptr[i-1] += 1;
WeightGrid_ptr[i-2] += 1;
}
else if(Grid_ptr[i-1] == 'O')
{
WeightGrid_ptr[i-2] += 50;
}
else if(Grid_ptr[i-2] == 'O')
{
WeightGrid_ptr[i-1] += 50;
}
}
//CHECK O --> Top Left Vector
//If within allowed parameters
if( (i) & (Side > 1) && i > Side*2)
{
if (Grid_ptr[i-Side-1] == '?' && Grid_ptr[i-Side*2-2] == '?')
{
WeightGrid_ptr[i-Side-1] += 1;
WeightGrid_ptr[i-Side*2-2] += 1;
}
else if (Grid_ptr[i-Side-1] == 'O')
{
WeightGrid_ptr[i-Side*2-2] += 50;
}
else if (Grid_ptr[i-Side*2-2] == 'O')
{
WeightGrid_ptr[i-Side-1] += 50;
}
}
//CHECK O --> Mid Top Vector
//If within allowed parameters
if (i > Side*2)
{
if(Grid_ptr[i + Side] == '?' && Grid_ptr[i + Side*2] == '?')
{
WeightGrid_ptr[i + Side] += 1;
WeightGrid_ptr[i + Side*2] += 1;
}
else if(Grid_ptr[i + Side] == 'O')
{
WeightGrid_ptr[i + Side*2] += 50;
}
else if (Grid_ptr[i + Side*2] == 'O')
{
WeightGrid_ptr[i + Side] += 50;
}
}
}
} // end for scan 'X' 'O'
//Get highest value from weightgrid, add an 'O' to that position, end method automatically
for (USHORT q = 0; q < GridSize; q++)
{
if (Grid_ptr[q] == '?')
{
//If a better spot is found
if (WeightGrid_ptr[q] > *fattest_ptr)
{
*fattest_ptr = WeightGrid_ptr[q];
*fattestIndex_ptr = q;
}
}
}
Grid_ptr[*fattestIndex_ptr] = 'O';
//SAFE DELETE POINTER WeightGrid_ptr
if (WeightGrid_ptr != NULL)
{
delete[] WeightGrid_ptr;
WeightGrid_ptr = NULL;
}
//SAFE DELETE POINTER fattest_ptr
if (fattest_ptr != NULL)
{
delete fattest_ptr;
fattest_ptr = NULL;
}
//SAFE DELETE POINTER fattestIndex_ptr
if (fattestIndex_ptr != NULL)
{
delete fattestIndex_ptr;
fattestIndex_ptr = NULL;
}
}
int _tmain(int argc, _TCHAR* argv[])
{
//& adress off |-| &x = 0x?
//* value pointed by |-| a = *b
//Make the required variables on the heap
USHORT GridHeight = 0;
USHORT GridWidth = 0;
USHORT GridSize = 0;
USHORT moveCounter = 0;
char currentMove;
USHORT input;
//bool* humanWin_ptr = new bool(false);
//bool* computerWin_ptr = new bool(false);
bool humanWin_ptr = false;
bool computerWin_ptr = false;
bool Draw = false;
cout << "A challanger has arrived!" << endl;
//WARNING FOR THIS BLOCK! Special condition on for loop!
for(;;)
{
cout << "Please state the width for the grid \n";
scanf_s("%hu", &input);
if (input > 2 && input < 20)
{
GridWidth = input;
break; //CRITICAL CODE
}
else
{
cout << "Input was not correct, please state a number between 3 and 20 \n\n";
cout << "Example of correct input '3' (without quotes) \n";
}
}
//WARNING FOR THIS BLOCK! Special condition on for loop!
for(;;)
{
cout << "Please state the height for the grid \n";
scanf_s("%hu", &input);
if (input > 2 && input < 20)
{
GridHeight = input;
break; //CRITICAL CODE
}
else
{
cout << "Input was not correct, please state a number between 3 and 20 \n\n";
cout << "Example of correct input '3' (without quotes) \n";
}
}
cout << "You have succesfully filled in the paperwork to create the Grid" << endl;
GridSize = GridHeight * GridWidth;
cout << "The total GridSize is " << GridSize << " tiles in size" << endl;
//if (GridWidth != GridHeigth)
//{
// cout << "Warning! \n\nGrid is not square. Program may run irregularly!";
// cout << "Close the program or press a key to continue";
// scanf();
//}
//Note: pointer to a Grid object on the heap
char* Grid_ptr = new char[GridSize];
//Initialize Grid as empty
for (USHORT i = 0; i < GridSize; i++)
{
Grid_ptr[i] = '?';
}
//Visualize this step
cout << "Grid created as empty Grid" << endl;
cout << endl;
cout << "Please read the following introduction if you wish for an explanation of the game" << endl;
cout << "You will be reffered to as Player One equally so the opponent as AI" << endl;
cout << "You always start with the first move" << endl;
cout << "The condition for victory is a line of X X X (3 total) in a single line, colomn or a diagonal line across the Grid" << endl;
cout << "Turns are exchanged per move 1 : 1, there are no time limits so use all you need" << endl;
cout << "Player One can not lose this 3x3 Grid game when the best option is always chosen" << endl;
cout << "Consider playing a larger field if you wish to win, Best of luck!" << endl;
cout << "The grid is filled in like this!" << endl;
PrintGrid(Grid_ptr, GridWidth, GridHeight, GridSize);
while(humanWin_ptr == false && computerWin_ptr == false && Draw == false)
{
cout << "Players One's Turn! \n";
cout << "Please fill in the number your X";
currentMove = 'H';
for(;;)
{
scanf_s("%i" , &input);
if (Grid_ptr[input] == 'X' || Grid_ptr[input] == 'O')
{
cout << "That space is already taken ,try another";
}
else
{
Grid_ptr[input] = 'X';
moveCounter++;
break;
}
}
cout << '\n';
PrintGrid(Grid_ptr, GridWidth, GridHeight, GridSize);
CheckForWin(Grid_ptr, GridSize, GridWidth, humanWin_ptr, computerWin_ptr, currentMove);
cout << "AI is making a move!" << endl;
currentMove = 'C';
useAI(Grid_ptr, GridSize, GridWidth);
cout << '\n';
PrintGrid(Grid_ptr, GridWidth, GridHeight, GridSize);
CheckForWin(Grid_ptr, GridSize, GridWidth, humanWin_ptr, computerWin_ptr, currentMove);
if (humanWin_ptr)
{
cout << "Congratulations you have won the game! \n";
char c;
puts ("Enter any text. Include a Space ('.') in a sentence to exit: \n");
do
{
c=getchar();
putchar (c);
}
while (c != ' ');
}
else if (computerWin_ptr)
{
cout << "The computer won this match, better luck next time! \n";
char c;
puts ("Enter any text. Include a Space ('.') in a sentence to exit: \n");
do
{
c=getchar();
putchar (c);
}
while (c != ' ');
}
if (moveCounter >= GridSize)
{
Draw = true;
cout << "The game was a draw, good fighting!";
}
}
//int ch = 0;
//ch = _getch();
//wint_t _getwch( void );
//SAFE DELETE POINTER GRID
if (Grid_ptr != NULL)
{
delete[] Grid_ptr;
Grid_ptr = NULL;
}
/*
//SAFE DELETE POINTER Human Win
if (humanWin_ptr != NULL)
{
delete humanWin_ptr;
humanWin_ptr = NULL;
}
//SAFE DELETE POINTER Computer Win
if (computerWin_ptr != NULL)
{
delete computerWin_ptr;
computerWin_ptr = NULL;
}*/
return 0;
}
答案 4 :(得分:0)
你要求接缝是关于微优化的。首先正确实施,然后剖析/测量以找到瓶颈,然后思考如何改进。
由于问题是如此笼统(并且没有示例和代码),我认为不可能以不同的方式回答。