我正在尝试从tensorflow website完成MNIST教程 我有2GB的geforce 760gtx并且每次都耗尽内存。 我试图在脚本末尾的那些代码行中减少批量大小:
for i in range(20000):
batch = mnist.train.next_batch(5)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
但它总是试图使用相同数量的ram。我是tensorflow的新手,我想问一下,在这个例子中我可以减少内存使用量,或者是否有代码将其推送到CPU?
完整代码:
# Load mnist data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# Start TensorFlow InteractiveSession
import tensorflow as tf
sess = tf.InteractiveSession()
# Build a Softmax Regression Model
# 1. Placeholders
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
# 2. Variables
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.initialize_all_variables())
# 3. Predicted Class and Loss Function
y = tf.matmul(x,W) + b
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_))
# Train the Model
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
for i in range(1000):
batch = mnist.train.next_batch(100)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
# Evaluate the Model
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
# Build a Multilayer Convolutional Network
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# Convolutional and Pooling
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
# First Convolutional Layer
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# Second Convolutional Layer
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# Densely Connected Layer
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Readout Layer
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# Train and Evaluate the Model
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(5)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
答案 0 :(得分:5)
我预计问题不会发生在训练循环中,而是在最终的准确度评估中,其中所有测试集都在一批10000张图像中传递:
print("test accuracy %g"%accuracy.eval(
feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
在2 GB或更低的GPU上,这足以耗尽所有可用内存。我的GTX 965M遇到了同样的问题。
解决方案是使用批次进行评估。您需要计算批次总数并累计总精度。在代码中:
# evaluate in batches to avoid out-of-memory issues
n_batches = mnist.test.images.shape[0] // 50
cumulative_accuracy = 0.0
for index in range(n_batches):
batch = mnist.test.next_batch(50)
cumulative_accuracy += accuracy.eval(
feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("test accuracy {}".format(cumulative_accuracy / n_batches))