我有以下使用决策树进行分类的代码。我需要将测试数据集的预测变为java数组并打印它们。有人可以帮我扩展这个代码。我需要一个预测标签和实际标签的二维数组,并打印预测标签。
public class DecisionTreeClass {
public static void main(String args[]){
SparkConf sparkConf = new SparkConf().setAppName("DecisionTreeClass").setMaster("local[2]");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// Load and parse the data file.
String datapath = "/home/thamali/Desktop/tlib.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();//A training example used in supervised learning is called a “labeled point” in MLlib.
// Split the data into training and test sets (30% held out for testing)
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
JavaRDD<LabeledPoint> trainingData = splits[0];
JavaRDD<LabeledPoint> testData = splits[1];
// Set parameters.
// Empty categoricalFeaturesInfo indicates all features are continuous.
Integer numClasses = 12;
Map<Integer, Integer> categoricalFeaturesInfo = new HashMap();
String impurity = "gini";
Integer maxDepth = 5;
Integer maxBins = 32;
// Train a DecisionTree model for classification.
final DecisionTreeModel model = DecisionTree.trainClassifier(trainingData, numClasses,
categoricalFeaturesInfo, impurity, maxDepth, maxBins);
// Evaluate model on test instances and compute test error
JavaPairRDD<Double, Double> predictionAndLabel =
testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
@Override
public Tuple2<Double, Double> call(LabeledPoint p) {
return new Tuple2(model.predict(p.features()), p.label());
}
});
Double testErr =
1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
@Override
public Boolean call(Tuple2<Double, Double> pl) {
return !pl._1().equals(pl._2());
}
}).count() / testData.count();
System.out.println("Test Error: " + testErr);
System.out.println("Learned classification tree model:\n" + model.toDebugString());
}
}
答案 0 :(得分:1)
你基本上与预测和标签变量完全相同。如果您确实需要2d双数组的列表,可以将您使用的方法更改为:
JavaRDD<double[]> valuesAndPreds = testData.map(point -> new double[]{model.predict(point.features()), point.label()});
并在该引用上运行collect
以获取2d双数组的列表。
List<double[]> values = valuesAndPreds.collect();
我会在这里查看文档:{{3}}。您还可以使用MulticlassMetrics等类更改数据以获得模型的其他静态性能度量。这需要将mapToPair函数更改为map函数并将泛型更改为对象。如下所示:
JavaRDD<Tuple2<Object, Object>> valuesAndPreds = testData().map(point -> new Tuple2<>(model.predict(point.features()), point.label()));
然后跑步:
MulticlassMetrics multiclassMetrics = new MulticlassMetrics(JavaRDD.toRDD(valuesAndPreds));
Spark的MLLib文档中记录了所有这些内容。此外,您提到需要打印结果。如果这是作业,我会让你弄清楚那一部分,因为从列表中学习如何做到这一点是一个很好的练习。
编辑:
另外,注意到你使用的是java 7,我的内容来自java 8.要回答关于如何变成2d双数组的主要问题,你可以这样做:
JavaRDD<double[]> valuesAndPreds = testData.map(new org.apache.spark.api.java.function.Function<LabeledPoint, double[]>() {
@Override
public double[] call(LabeledPoint point) {
return new double[]{model.predict(point.features()), point.label()};
}
});
然后运行collect,获取两个双打的列表。另外,要提示打印部分,请查看java.util.Arrays toString实现。