我想重建(近似)在SVD中分解的原始矩阵。有没有办法在不必将V factor
本地Matrix
转换为DenseMatrix
的情况下执行此操作?
以下是基于documentation的分解(请注意,评论来自doc示例)
import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.SingularValueDecomposition
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.linalg.distributed.RowMatrix
val data = Array(
Vectors.dense(1.0, 0.0, 7.0, 0.0, 0.0),
Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0),
Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0))
val dataRDD = sc.parallelize(data, 2)
val mat: RowMatrix = new RowMatrix(dataRDD)
// Compute the top 5 singular values and corresponding singular vectors.
val svd: SingularValueDecomposition[RowMatrix, Matrix] = mat.computeSVD(5, computeU = true)
val U: RowMatrix = svd.U // The U factor is a RowMatrix.
val s: Vector = svd.s // The singular values are stored in a local dense vector.
val V: Matrix = svd.V // The V factor is a local dense matrix.
要重建原始矩阵,我必须计算U *对角线(s)*转置(V)。
首先,将奇异值向量s
转换为对角矩阵S
。
import org.apache.spark.mllib.linalg.Matrices
val S = Matrices.diag(s)
但是当我尝试计算U *对角线(s)*转置(V)时:我收到以下错误。
val dataApprox = U.multiply(S.multiply(V.transpose))
我收到以下错误:
错误:类型不匹配; 发现:org.apache.spark.mllib.linalg.Matrix 必需:org.apache.spark.mllib.linalg.DenseMatrix
如果我将Matrix
V
转换为DenseMatrix
Vdense
import org.apache.spark.mllib.linalg.DenseMatrix
val Vdense = new DenseMatrix(V.numRows, V.numCols, V.toArray)
val dataApprox = U.multiply(S.multiply(Vdense.transpose))
有没有办法在没有转换的情况下从svd的输出中获取原始矩阵dataApprox
的近似值?
答案 0 :(得分:0)
以下代码为我工作
//numTopSingularValues=Features used for SVD
val latentFeatureArray=s.toArray
//Making a ListBuffer to Make a DenseMatrix for s
var denseMatListBuffer=ListBuffer.empty[Double]
val zeroListBuffer=ListBuffer.empty[Double]
var addZeroIndex=0
while (addZeroIndex < numTopSingularValues )
{
zeroListBuffer+=0.0D
addZeroIndex+=1
}
var addDiagElemIndex=0
while(addDiagElemIndex<(numTopSingularValues-1))
{
denseMatListBuffer+=latentFeatureArray(addDiagElemIndex)
denseMatListBuffer.appendAll(zeroListBuffer)
addDiagElemIndex+=1
}
denseMatListBuffer+=latentFeatureArray(numTopSingularValues-1)
val sDenseMatrix=new DenseMatrix(numTopSingularValues,numTopSingularValues,denseMatListBuffer.toArray)
val vMultiplyS=V.multiply(sDenseMatrix)
val postMulWithUDenseMat=vMultiplyS.transpose
val dataApprox=U.multiply(postMulWithUDenseMat)