我有一部分与OpenMP的串行程序。当我用8个线程(我的计算机可以使用8个线程)执行它时,同时我用16或32或64等表示它是正常的吗?这是正常的吗? Couse我认为当我创建更多的线程而不是核心时,程序将会缓慢。如果要检查它,这是代码。它运行正常!在main中,在其他文件中,有一组线程。
void truncated_radix_sort(unsigned long int *morton_codes,
unsigned long int *sorted_morton_codes,
unsigned int *permutation_vector,
unsigned int *index,
int *level_record,
int N,
int population_threshold,
int sft, int lv){
int BinSizes[MAXBINS] = {0};
unsigned int *tmp_ptr;
unsigned long int *tmp_code;
//thread management
extern int NUM_THREADS;
extern int activeThreads;
int startNewThreads = 0;
//if there's space for new threads, set flag to 1 and add the new threads to the count
//once calling is over, decrement count
level_record[0] = lv; // record the level of the node
if(N<=population_threshold || sft < 0) { // Base case. The node is a leaf
memcpy(permutation_vector, index, N*sizeof(unsigned int)); // Copy the pernutation vector
memcpy(sorted_morton_codes, morton_codes, N*sizeof(unsigned long int)); // Copy the Morton codes
return;
}
else{
// Find which child each point belongs to
int j = 0;
for(j=0; j<N; j++){
unsigned int ii = (morton_codes[j]>>sft) & 0x07;
BinSizes[ii]++;
}
// scan prefix (must change this code)
int offset = 0, i = 0;
for(i=0; i<MAXBINS; i++){
int ss = BinSizes[i];
BinSizes[i] = offset;
offset += ss;
}
for(j=0; j<N; j++){
unsigned int ii = (morton_codes[j]>>sft) & 0x07;
permutation_vector[BinSizes[ii]] = index[j];
sorted_morton_codes[BinSizes[ii]] = morton_codes[j];
BinSizes[ii]++;
}
//swap the index pointers
swap(&index, &permutation_vector);
//swap the code pointers
swap_long(&morton_codes, &sorted_morton_codes);
int offsets[MAXBINS];
offset = 0;
offsets[0] = 0;
for(i = 0; i<MAXBINS-1; i++) {
int size = BinSizes[i] - offset;
offset +=size;
offsets[i+1] = offset;
}
#pragma omp flush(activeThreads)
//Allow creation of new threads? Only if the number has not been exceeded
if (activeThreads < NUM_THREADS && 0 == startNewThreads){
startNewThreads = 1; //allow creation of more threads
}
if (activeThreads > NUM_THREADS && 1 == startNewThreads){
startNewThreads = 0; //stop creating more threads
}
#pragma omp flush(startNewThreads)
omp_set_nested(startNewThreads);
/* Call the function recursively to split the lower levels */
#pragma omp parallel num_threads(NUM_THREADS)
{
#pragma omp for private(i) nowait\
schedule(static)
for(i=0; i<MAXBINS; i++){
if (omp_get_nested()){
#pragma omp atomic
activeThreads ++; //account for new thread
#pragma omp flush(activeThreads)
}
truncated_radix_sort(&morton_codes[offsets[i]],
&sorted_morton_codes[offsets[i]],
&permutation_vector[offsets[i]],
&index[offsets[i]], &level_record[offsets[i]],
sizes[i],
population_threshold,
sft-3, lv+1);
if(omp_get_nested()){
#pragma omp atomic
activeThreads--; //thread about to terminate
#pragma omp flush(activeThreads)
}
}
}
}
}
答案 0 :(得分:0)
你的实验与理论相吻合。您可能想了解Amdahl's law。基本上,根据这个定律,您将获得与较低线程数大致相同的性能。在现实生活中,它会在某个时刻开始减少(你有太多的线程)。如果你有数以千计的线程,你可能会发现它。