我有一些时间码,我用它来衡量给定代码片段的运行时间:
post "/cities" => "cities#create", as: :cities
然后,为了使用它,我有以下代码用于对一组数据执行累积,但不是简单地将数字加在一起,而是首先找到总停止时间从应用Collatz Conjecture并积累它。
struct time_data {
std::chrono::steady_clock::time_point start, end;
auto get_duration() const {
return end - start;
}
void print_data(std::ostream & out) const {
out << str();
}
std::string str() const {
static const std::locale loc{ "" };
std::stringstream ss;
ss.imbue(loc);
ss << "Start: " << std::setw(24) << std::chrono::nanoseconds{ start.time_since_epoch() }.count() << "ns\n";
ss << "End: " << std::setw(24) << std::chrono::nanoseconds{ end.time_since_epoch() }.count() << "ns\n";
ss << "Duration: " << std::setw(24) << std::chrono::nanoseconds{ get_duration() }.count() << "ns\n";
return ss.str();
}
static friend std::ostream & operator<<(std::ostream & out, const time_data & data) {
return out << data.str();
}
};
template<typename T>
time_data time_function(T && func) {
time_data data;
data.start = std::chrono::steady_clock::now();
func();
data.end = std::chrono::steady_clock::now();
return data;
}
为了参考起见:运行它的样板template<typename T>
T accumulation_function(T a, T b) {
T count = 0;
while (b > 1) {
if (b % 2 == 0) b /= 2;
else b = b * 3 + 1;
++count;
}
return a + count;
}
template<typename IT>
auto std_sum(IT begin, IT end) {
auto sum = (*begin - *begin);
sum = std::accumulate(begin, end, sum, accumulation_function<decltype(sum)>);
return sum;
}
template<typename IT>
auto single_thread_sum(IT begin, IT end) {
auto sum = (*begin - *begin);
IT current = begin;
while (current != end) {
sum = accumulation_function(sum, *current);
++current;
}
return sum;
}
template<typename IT, uint64_t N>
auto N_thread_smart_sum(IT begin, IT end) {
auto sum = (*begin - *begin);
std::vector<std::thread> threads;
std::array<decltype(sum), N> sums;
auto dist = std::distance(begin, end);
for (uint64_t i = 0; i < N; i++) {
threads.emplace_back([=, &sums] {
IT first = begin;
IT last = begin;
auto & tsum = sums[i];
tsum = 0;
std::advance(first, i * dist / N);
std::advance(last, (i + 1) * dist / N);
while (first != last) {
tsum = accumulation_function(tsum, *first);
++first;
}
});
}
for (std::thread & thread : threads)
thread.join();
for (const auto & s : sums) {
sum += s;
}
return sum;
}
template<typename IT>
auto two_thread_smart_sum(IT begin, IT end) {
return N_thread_smart_sum<IT, 2>(begin, end);
}
template<typename IT>
auto four_thread_smart_sum(IT begin, IT end) {
return N_thread_smart_sum<IT, 4>(begin, end);
}
template<typename IT>
auto eight_thread_smart_sum(IT begin, IT end) {
return N_thread_smart_sum<IT, 8>(begin, end);
}
template<typename IT>
auto sixteen_thread_smart_sum(IT begin, IT end) {
return N_thread_smart_sum<IT, 16>(begin, end);
}
template<typename IT>
auto thirty_two_thread_smart_sum(IT begin, IT end) {
return N_thread_smart_sum<IT, 32>(begin, end);
}
template<typename IT>
auto sixty_four_thread_smart_sum(IT begin, IT end) {
return N_thread_smart_sum<IT, 64>(begin, end);
}
代码:
main
这是该计划的输出:
int main() {
std::vector<int64_t> raw_data;
auto fill_data = time_function([&raw_data] {
constexpr uint64_t SIZE = 1'000'000'000ull;
raw_data.resize(SIZE);
std::vector<std::thread> threads;
for (int i = 0; i < 8; i++) {
threads.emplace_back([i, SIZE, &raw_data] {
uint64_t begin = i * SIZE / 8;
uint64_t end = (i + 1) * SIZE / 8;
for (uint64_t index = begin; index < end; index++) {
raw_data[index] = begin % (20 + i);
}
});
}
for (std::thread & t : threads)
t.join();
});
int64_t sum;
std::cout << std::setw(25) << "Fill Data" << std::endl;
std::cout << fill_data << std::endl;
auto std_data = time_function([&] {
sum = std_sum(raw_data.begin(), raw_data.end());
});
std::cout << std::setw(25) << "STD Sum: " << sum << std::endl;
std::cout << std_data << std::endl;
auto single_data = time_function([&] {
sum = single_thread_sum(raw_data.begin(), raw_data.end());
});
std::cout << std::setw(25) << "Single Sum: " << sum << std::endl;
std::cout << single_data << std::endl;
auto smart_2_data = time_function([&] {
sum = two_thread_smart_sum(raw_data.begin(), raw_data.end());
});
std::cout << std::setw(25) << "Two-Thread-Smart Sum: " << sum << std::endl;
std::cout << smart_2_data << std::endl;
auto smart_4_data = time_function([&] {
sum = four_thread_smart_sum(raw_data.begin(), raw_data.end());
});
std::cout << std::setw(25) << "Four-Thread-Smart Sum: " << sum << std::endl;
std::cout << smart_4_data << std::endl;
auto smart_8_data = time_function([&] {
sum = eight_thread_smart_sum(raw_data.begin(), raw_data.end());
});
std::cout << std::setw(25) << "Eight-Thread-Smart Sum: " << sum << std::endl;
std::cout << smart_8_data << std::endl;
auto smart_16_data = time_function([&] {
sum = sixteen_thread_smart_sum(raw_data.begin(), raw_data.end());
});
std::cout << std::setw(25) << "Sixteen-Thread-Smart Sum: " << sum << std::endl;
std::cout << smart_16_data << std::endl;
auto smart_32_data = time_function([&] {
sum = thirty_two_thread_smart_sum(raw_data.begin(), raw_data.end());
});
std::cout << std::setw(25) << "Thirty-Two-Thread-Smart Sum: " << sum << std::endl;
std::cout << smart_32_data << std::endl;
auto smart_64_data = time_function([&] {
sum = sixty_four_thread_smart_sum(raw_data.begin(), raw_data.end());
});
std::cout << std::setw(25) << "Sixty-Four-Thread-Smart Sum: " << sum << std::endl;
std::cout << smart_64_data << std::endl;
return 0;
}
前几个结果并不令人惊讶:我自编的累积代码与 Fill Data
Start: 16,295,979,890,252ns
End: 16,300,523,805,484ns
Duration: 4,543,915,232ns
STD Sum: 7750000000
Start: 16,300,550,212,791ns
End: 16,313,216,607,890ns
Duration: 12,666,395,099ns
Single Sum: 7750000000
Start: 16,313,216,694,522ns
End: 16,325,774,379,684ns
Duration: 12,557,685,162ns
Two-Thread-Smart Sum: 7750000000
Start: 16,325,774,466,014ns
End: 16,334,441,032,868ns
Duration: 8,666,566,854ns
Four-Thread-Smart Sum: 7750000000
Start: 16,334,441,137,913ns
End: 16,342,188,642,721ns
Duration: 7,747,504,808ns
Eight-Thread-Smart Sum: 7750000000
Start: 16,342,188,770,706ns
End: 16,347,850,908,471ns
Duration: 5,662,137,765ns
Sixteen-Thread-Smart Sum: 7750000000
Start: 16,347,850,961,597ns
End: 16,352,187,838,584ns
Duration: 4,336,876,987ns
Thirty-Two-Thread-Smart Sum: 7750000000
Start: 16,352,187,891,710ns
End: 16,356,111,411,220ns
Duration: 3,923,519,510ns
Sixty-Four-Thread-Smart Sum: 7750000000
Start: 16,356,111,471,288ns
End: 16,359,988,028,812ns
Duration: 3,876,557,524ns
函数的工作方式大致相同(我已经看到它们都出现了&#34;最快的&#34 ;在连续运行中,暗示它们的实现可能类似)。当我转移到两个线程和四个线程时,代码变得更快。这是有道理的,因为我使用的是英特尔4核处理器。
但超出这一点的结果令人困惑。我的CPU只有4个内核(如果考虑超线程,则为8个内核),但即使我原谅超线程在8个线程上提供的边际性能提升,将数字增加到16,32和64个线程都会产生额外的性能提升。为什么是这样?当我已经超出CPU可以物理同时运行的线程数时,额外的线程如何产生额外的性能提升?
注意:这与this linked question不同,因为我正在处理特定的用例和代码,而链接的问题则涉及一般性。
我对代码进行了调整,以便在创建线程时,将其优先级设置为Windows允许的最高优先级。从广义上讲,结果似乎是一样的。
std::accumulate
我编辑了程序以确保 Fill Data
Start: 18,950,798,175,057ns
End: 18,955,085,850,007ns
Duration: 4,287,674,950ns
STD Sum: 7750000000
Start: 18,955,086,975,013ns
End: 18,967,581,061,562ns
Duration: 12,494,086,549ns
Single Sum: 7750000000
Start: 18,967,581,136,724ns
End: 18,980,127,355,698ns
Duration: 12,546,218,974ns
Two-Thread-Smart Sum: 7750000000
Start: 18,980,127,426,332ns
End: 18,988,619,042,214ns
Duration: 8,491,615,882ns
Four-Thread-Smart Sum: 7750000000
Start: 18,988,619,135,487ns
End: 18,996,215,684,824ns
Duration: 7,596,549,337ns
Eight-Thread-Smart Sum: 7750000000
Start: 18,996,215,763,004ns
End: 19,002,055,977,730ns
Duration: 5,840,214,726ns
Sixteen-Thread-Smart Sum: 7750000000
Start: 19,002,056,055,608ns
End: 19,006,282,772,254ns
Duration: 4,226,716,646ns
Thirty-Two-Thread-Smart Sum: 7750000000
Start: 19,006,282,840,774ns
End: 19,010,539,676,914ns
Duration: 4,256,836,140ns
Sixty-Four-Thread-Smart Sum: 7750000000
Start: 19,010,539,758,113ns
End: 19,014,450,311,829ns
Duration: 3,910,553,716ns
变量是lambda中的局部变量,而不是lambda外部的引用。多线程代码加速了很多,但它仍然表现出相同的行为。
tsum
我再次运行相同的测试,但相反。结果非常相似:
Fill Data
Start: 21,740,931,802,656ns
End: 21,745,429,501,480ns
Duration: 4,497,698,824ns
STD Sum: 7750000000
Start: 21,745,430,637,655ns
End: 21,758,206,612,632ns
Duration: 12,775,974,977ns
Single Sum: 7750000000
Start: 21,758,206,681,153ns
End: 21,771,260,233,797ns
Duration: 13,053,552,644ns
Two-Thread-Smart Sum: 7750000000
Start: 21,771,260,287,828ns
End: 21,777,845,764,595ns
Duration: 6,585,476,767ns
Four-Thread-Smart Sum: 7750000000
Start: 21,777,845,831,002ns
End: 21,784,011,543,159ns
Duration: 6,165,712,157ns
Eight-Thread-Smart Sum: 7750000000
Start: 21,784,011,628,584ns
End: 21,788,846,061,014ns
Duration: 4,834,432,430ns
Sixteen-Thread-Smart Sum: 7750000000
Start: 21,788,846,127,422ns
End: 21,791,921,652,246ns
Duration: 3,075,524,824ns
Thirty-Two-Thread-Smart Sum: 7750000000
Start: 21,791,921,747,330ns
End: 21,794,980,832,033ns
Duration: 3,059,084,703ns
Sixty-Four-Thread-Smart Sum: 7750000000
Start: 21,794,980,901,761ns
End: 21,797,937,401,426ns
Duration: 2,956,499,665ns
答案 0 :(得分:3)
所有tsum
次写入都是相同的array
,这将占用内存中的连续地址。这将导致所有这些写入的缓存争用问题。有更多的线程将这些写入扩展到不同的缓存行,因此CPU核心花费的时间更少,无效并重新加载缓存行。
尝试累积到本地tsum
变量(不是对sums
的引用),然后在循环完成时将其写入sums[i]
。
答案 1 :(得分:3)
我怀疑您看到了加速,因为您的应用程序的线程占系统上运行的总活动线程的较大百分比,从而为您提供更多的时间片。当你有其他程序在运行时,你可能想看看数字是变好还是变坏。