我正在通过 Anthony Williams 阅读C++ Concurrency in Action。在关于设计并发代码的章节中,有std::for_each algorihtm的并行版本。以下是本书中稍微修改过的代码:
join_thread.hpp
#pragma once
#include <vector>
#include <thread>
class join_threads
{
public:
explicit join_threads(std::vector<std::thread>& threads)
: threads_(threads) {}
~join_threads()
{
for (size_t i = 0; i < threads_.size(); ++i)
{
if(threads_[i].joinable())
{
threads_[i].join();
}
}
}
private:
std::vector<std::thread>& threads_;
};
parallel_for_each.hpp
#pragma once
#include <future>
#include <algorithm>
#include "join_threads.hpp"
template<typename Iterator, typename Func>
void parallel_for_each(Iterator first, Iterator last, Func func)
{
const auto length = std::distance(first, last);
if (0 == length) return;
const auto min_per_thread = 25u;
const unsigned max_threads = (length + min_per_thread - 1) / min_per_thread;
const auto hardware_threads = std::thread::hardware_concurrency();
const auto num_threads= std::min(hardware_threads != 0 ?
hardware_threads : 2u, max_threads);
const auto block_size = length / num_threads;
std::vector<std::future<void>> futures(num_threads - 1);
std::vector<std::thread> threads(num_threads-1);
join_threads joiner(threads);
auto block_start = first;
for (unsigned i = 0; i < num_threads - 1; ++i)
{
auto block_end = block_start;
std::advance(block_end, block_size);
std::packaged_task<void (void)> task([block_start, block_end, func]()
{
std::for_each(block_start, block_end, func);
});
futures[i] = task.get_future();
threads[i] = std::thread(std::move(task));
block_start = block_end;
}
std::for_each(block_start, last, func);
for (size_t i = 0; i < num_threads - 1; ++i)
{
futures[i].get();
}
}
我使用以下程序将其与std::for_each的顺序版本进行基准测试:
的main.cpp
#include <iostream>
#include <random>
#include <chrono>
#include "parallel_for_each.hpp"
using namespace std;
constexpr size_t ARRAY_SIZE = 500'000'000;
typedef std::vector<uint64_t> Array;
template <class FE, class F>
void test_for_each(const Array& a, FE fe, F f, atomic<uint64_t>& result)
{
auto time_begin = chrono::high_resolution_clock::now();
result = 0;
fe(a.begin(), a.end(), f);
auto time_end = chrono::high_resolution_clock::now();
cout << "Result = " << result << endl;
cout << "Time: " << chrono::duration_cast<chrono::milliseconds>(
time_end - time_begin).count() << endl;
}
int main()
{
random_device device;
default_random_engine engine(device());
uniform_int_distribution<uint8_t> distribution(0, 255);
Array a;
a.reserve(ARRAY_SIZE);
cout << "Generating array ... " << endl;
for (size_t i = 0; i < ARRAY_SIZE; ++i)
a.push_back(distribution(engine));
atomic<uint64_t> result;
auto acc = [&result](uint64_t value) { result += value; };
cout << "parallel_for_each ..." << endl;
test_for_each(a, parallel_for_each<Array::const_iterator, decltype(acc)>, acc, result);
cout << "for_each ..." << endl;
test_for_each(a, for_each<Array::const_iterator, decltype(acc)>, acc, result);
return 0;
}
我机器上算法的并行版本比顺序版本慢两倍:
parallel_for_each ...
Result = 63750301073
Time: 5448
for_each ...
Result = 63750301073
Time: 2496
我在 Intel(R)Core(TM)i3-6100 CPU @ 3.70GHz <上运行的 Ubuntu Linux 上使用 GCC 6.2 编译器< /强>
如何解释这种行为?这是因为在线程和缓存ping-pong之间共享atomic<uint64_t>
变量?
我使用性能分别对其进行了分析。对于并行版本,统计数据如下:
1137982167 cache-references
247652893 cache-misses # 21,762 % of all cache refs
60868183996 cycles
27409239189 instructions # 0,45 insns per cycle
3287117194 branches
80895 faults
4 migrations
顺序之一:
402791485 cache-references
246561299 cache-misses # 61,213 % of all cache refs
40284812779 cycles
26515783790 instructions # 0,66 insns per cycle
3188784664 branches
48179 faults
3 migrations
很明显,并行版本会产生更多的缓存引用,循环和错误,但为什么呢?
答案 0 :(得分:5)
你共享相同的result
变量:所有线程都在atomic<uint64_t> result
上累积,颠倒了缓存!
每次线程写入result
时,其他核心中的所有缓存都会失效:这会导致缓存行争用。
更多信息:
"Sharing Is the Root of All Contention"
[...]要写入内存位置,核心必须另外拥有包含该位置的缓存行的独占所有权。虽然一个核心是独占使用的,但是所有其他尝试写入相同内存位置的核心必须等待并轮流 - 也就是说,它们必须串行运行。从概念上讲,它就好像每个缓存行都受到硬件互斥锁的保护,其中只有一个核心可以同时保存该缓存行上的硬件锁。
This article on "false sharing"涵盖了类似的问题,更深入地解释了缓存中发生的事情。
我对您的程序进行了一些修改并获得了以下结果(在i7-4770K [8个主题+超线程]的机器上):
Generating array ...
parallel_for_each ...
Result = 63748111806
Time: 195
for_each ...
Result = 63748111806
Time: 2727
并行版本比串行版本大约快92%。
std::future
和std::packaged_task
是重量级抽象。在这种情况下,std::experimental::latch
就足够了。
每个任务都发送到线程池这个最小化线程创建开销。
每个任务都有自己的累加器。 消除了分享。
代码可用here on my GitHub。它使用了一些个人依赖项,但无论如何都应该理解这些变化。
以下是最重要的变化:
// A latch is being used instead of a vector of futures.
ecst::latch l(num_threads - 1);
l.execute_and_wait_until_zero([&]
{
auto block_start = first;
for (unsigned i = 0; i < num_threads - 1; ++i)
{
auto block_end = block_start;
std::advance(block_end, block_size);
// `p` is a thread pool.
// Every task posted in the thread pool has its own `tempacc` accumulator.
p.post([&, block_start, block_end, tempacc = 0ull]() mutable
{
// The task accumulator is filled up...
std::for_each(block_start, block_end, [&tempacc](auto x){ tempacc += x; });
// ...and then the atomic variable is incremented ONCE.
func(tempacc);
l.decrement_and_notify_all();
});
block_start = block_end;
}
// Same idea here: accumulate to local non-atomic counter, then
// add the partial result to the atomic counter ONCE.
auto tempacc2 = 0ull;
std::for_each(block_start, last, [&tempacc2](auto x){ tempacc2 += x; });
func(tempacc2);
});