我有关于更快计算刚性转换的方法的问题(是的,我知道我可以简单地使用库,但需要自己编写代码)。
我需要计算x'和y'对于给定图像中的每个x,y。我的主要瓶颈是所有坐标的点积(此后的插值不是问题)。目前我实施了三个选项:
列表理解
result = np.array([[np.dot(matrix, np.array([x, y, 1])) for x in xs] for y in ys])
简单双 - for
循环
result = np.zeros((Y, X, 3))
for x in xs:
for y in ys:
result[y, x, :] = np.dot(matrix, np.array([x, y, 1]))
np.ndenumerate
result = np.zeros((Y, X, 3))
for (y, x), value in np.ndenumerate(image):
result[y, x, :] = np.dot(matrix, np.array([x, y, 1]))
512x512图像中最快的方式是列表理解(比np.ndenumerate
快约1.5倍,比循环加倍快1.1倍。)
有没有办法更快地做到这一点?
答案 0 :(得分:3)
您可以使用np.indices
和np.rollaxis
生成3D数组,其中coords[i, j] == [i, j]
。这里坐标需要切换
然后你要做的就是追加你要求的1
,并使用@
coords_ext = np.empty((Y, X, 3))
coords_ext[...,[1,0]] = np.rollaxis(np.indices((Y, X)), 0, start=3)
coords_ext[...,2] = 1
# convert to column vectors and back for matmul broadcasting
result = (matrix @ coords_ext[...,None])[...,0]
# or alternatively, work with row vectors and do it in the other order
result = coords_ext @ matrix.T
答案 1 :(得分:3)
借鉴this post
,创建1D
数组而不是2D
或3D
网格并在运行中broadcasted
使用它们的想法内存效率的操作,从而实现性能优势,这是一种方法 -
out = ys[:,None,None]*matrix[:,1] + xs[:,None]*matrix[:,0] + matrix[:,2]
如果您为xs
尺寸的图片覆盖了ys
和512x512
的所有索引,我们会使用np.arange
创建它们,就像这样 -
ys = np.arange(512)
xs = np.arange(512)
运行时测试
功能定义 -
def original_listcomp_app(matrix, X, Y): # Original soln with list-compr.
ys = np.arange(Y)
xs = np.arange(X)
out = np.array([[np.dot(matrix, np.array([x, y, 1])) for x in xs] \
for y in ys])
return out
def indices_app(matrix, X, Y): # @Eric's soln
coords_ext = np.empty((Y, X, 3))
coords_ext[...,[1,0]] = np.rollaxis(np.indices((Y, X)), 0, start=3)
coords_ext[...,2] = 1
result = np.matmul(coords_ext,matrix.T)
return result
def broadcasting_app(matrix, X, Y): # Broadcasting based
ys = np.arange(Y)
xs = np.arange(X)
out = ys[:,None,None]*matrix[:,1] + xs[:,None]*matrix[:,0] + matrix[:,2]
return out
计时和验证 -
In [242]: # Inputs
...: matrix = np.random.rand(3,3)
...: X,Y = 512, 512
...:
In [243]: out0 = original_listcomp_app(matrix, X, Y)
...: out1 = indices_app(matrix, X, Y)
...: out2 = broadcasting_app(matrix, X, Y)
...:
In [244]: np.allclose(out0, out1)
Out[244]: True
In [245]: np.allclose(out0, out2)
Out[245]: True
In [253]: %timeit original_listcomp_app(matrix, X, Y)
1 loops, best of 3: 1.32 s per loop
In [254]: %timeit indices_app(matrix, X, Y)
100 loops, best of 3: 16.1 ms per loop
In [255]: %timeit broadcasting_app(matrix, X, Y)
100 loops, best of 3: 9.64 ms per loop