在pandas中添加由以前的新列值导致的列(EMA)

时间:2016-11-24 09:19:02

标签: python pandas

我的Orignal数据框如下:

       C   EMA
0      a  start value as ema0
1      b  (ema0*alpha) + (b * (1-alpha)) as ema1
2      c  (ema1*alpha) + (c * (1-alpha)) as ema2
3      d  (ema2*alpha) + (d * (1-alpha)) as ema3 
4      e  (ema3*alpha) + (e * (1-alpha)) as ema4
...    ... ....

这是股票数据。 0,1,2,3是次,C:关闭是浮动。

我需要能够将一个EMA(指数移动平均线)的列添加到通过从当前C列计算得到的orignal数据帧 和之前的新专栏(' EMA')。

Calculation example on Excel

的Cr:http://investexcel.net/how-to-calculate-ema-in-excel/

所以结果应该是这样的

ema_period = 30
myalpha = 2/(ema_period+1)

data['EMA'] = np.where(data['index'] < ema_period,data['C'].rolling(window=ema_period, min_periods=ema_period).mean(), data['C']*myalpha +data['EMA'].shift(1)*(1-myalpha) )

起始值是一个简单的平均值,所以我尝试了以下方法。 它是创造起始价值的第一个条件 但在计算EMA值时,它不适用于第二个条件。

public class MyAdapter extends BaseAdapter {

private Context mContext;

public MyAdapter(Context context) {
    mContext = context;
}

@Override
public int getCount() {
    return 10;
}

@Override
public Object getItem(int i) {
    return i;
}

@Override
public long getItemId(int i) {
    return i;
}

@Override
public View getView(int i, View view, ViewGroup viewGroup) {
    final ViewHolder viewHolder;
    if(view == null) {
        viewHolder = new ViewHolder();
        view = LayoutInflater.from(mContext).inflate(R.layout.row_file, viewGroup, false);

        viewHolder.pulsator = (PulsatorLayout) view.findViewById(R.id.pulsator);
        viewHolder.tvCount = (TextView) view.findViewById(R.id.tv_count);
        view.setTag(viewHolder);
    } else {
        viewHolder = (ViewHolder) view.getTag();
    }

    viewHolder.pulsator.start();
    viewHolder.tvCount.setText("My listview row No-> " + i);
    return view;
}

public static class ViewHolder {
    PulsatorLayout pulsator;
    TextView tvCount;
    }
}

2 个答案:

答案 0 :(得分:1)

由于您正在处理时间序列,建议您采用信号处理方法。使用显示herescipy.signal.lfilter

请执行以下操作:

df = # Your dataframe
start_value, alpha, weight = # initialize your parameters

# Use a filtering method to generate values
df['EMA'] = lfilter([1-alpha], [1.0, -alpha], df['C'].astype(float))

答案 1 :(得分:1)

附带图片中所需的EWMA:

enter image description here

<强> 代码:

ema_period = 12             # change it to ema_period = 30 for your case
myalpha = 2/(ema_period+1)

# concise form : df.expanding(min_periods=12).mean()
df['Expand_Mean'] = df.rolling(window=len(df), min_periods=ema_period).mean()
# obtain the very first index after nulls
idx = df['Expand_Mean'].first_valid_index()
# Make all the subsequent values after this index equal to NaN
df.loc[idx:, 'Expand_Mean'].iloc[1:] = np.NaN
# Let these rows now take the corresponding values in the Close column
df.loc[idx:, 'Expand_Mean'] = df['Expand_Mean'].combine_first(df['Close'])
# Perform EMA by turning off adjustment
df['12 Day EMA'] = df['Expand_Mean'].ewm(alpha=myalpha, adjust=False).mean()
df

获得EWMA:

enter image description here

DF构建:

index = ['1/2/2013','1/3/2013','1/4/2013','1/7/2013','1/8/2013','1/9/2013', '1/10/2013','1/11/2013',
         '1/14/2013','1/15/2013','1/16/2013','1/17/2013','1/18/2013','1/22/2013','1/23/2013',
         '1/24/2013','1/25/2013','1/28/2013','1/29/2013','1/30/2013']
data = [42.42, 43.27, 43.66, 43.4, 43.4, 44.27, 45.01, 44.48, 44.34, 
        44.44, 44.08, 44.16, 44.04, 43.74, 44.27, 44.11, 43.93, 44.35,
        45.21,44.92]

df = pd.DataFrame(dict(Close=data), index)
df.index = pd.to_datetime(df.index)