我需要在Python代码中使用优先级队列。为了找到有效的东西,我遇到了heapq。它看起来不错,但似乎只为整数指定。我认为它适用于具有比较运算符的任何对象,但它没有指定它需要哪些比较运算符。
此外,heapq
似乎是在Python中实现的,所以它并不快。
您是否了解Python中优先级队列的任何快速实现?最理想的情况是,我希望队列是通用的(即适用于具有指定比较运算符的任何对象)。
提前致谢
更新
在heapq
中重新比较,我可以像查理马丁建议的那样使用(priority, object)
,或者只为我的对象实现__cmp__
。
我仍在寻找比heapq
更快的东西。
答案 0 :(得分:38)
您可以使用Queue.PriorityQueue。
回想一下,Python不是强类型的,所以你可以保存你喜欢的任何东西:只需要创建一个(priority, thing)
的元组,你就可以了。
答案 1 :(得分:17)
我最终为heapq
实现了一个包装器,添加了一个用于维护队列元素唯一的dict。结果应该对所有运营商都非常有效:
class PriorityQueueSet(object):
"""
Combined priority queue and set data structure.
Acts like a priority queue, except that its items are guaranteed to be
unique. Provides O(1) membership test, O(log N) insertion and O(log N)
removal of the smallest item.
Important: the items of this data structure must be both comparable and
hashable (i.e. must implement __cmp__ and __hash__). This is true of
Python's built-in objects, but you should implement those methods if you
want to use the data structure for custom objects.
"""
def __init__(self, items=[]):
"""
Create a new PriorityQueueSet.
Arguments:
items (list): An initial item list - it can be unsorted and
non-unique. The data structure will be created in O(N).
"""
self.set = dict((item, True) for item in items)
self.heap = self.set.keys()
heapq.heapify(self.heap)
def has_item(self, item):
"""Check if ``item`` exists in the queue."""
return item in self.set
def pop_smallest(self):
"""Remove and return the smallest item from the queue."""
smallest = heapq.heappop(self.heap)
del self.set[smallest]
return smallest
def add(self, item):
"""Add ``item`` to the queue if doesn't already exist."""
if item not in self.set:
self.set[item] = True
heapq.heappush(self.heap, item)
答案 2 :(得分:9)
当使用优先级队列时,reduce-key是许多算法必需的操作(Dijkstra的算法,A *,OPTICS),我想知道为什么Python的内置优先级队列没有支持它。其他答案都没有提供支持此功能的解决方案。
还支持reduce-key操作的优先级队列是Daniel Stutzbach的this实现,对我来说非常适合Python 3.5。
from heapdict import heapdict
hd = heapdict()
hd["two"] = 2
hd["one"] = 1
obj = hd.popitem()
print("object:",obj[0])
print("priority:",obj[1])
# object: one
# priority: 1
答案 3 :(得分:7)
我没有使用它,但你可以尝试PyHeap。它是用C语言编写的,所以希望它对你来说足够快。
你是积极的heapq / PriorityQueue会不够快?可能值得与其中一个开始,然后进行分析,看看它是否真的是你的性能瓶颈。
答案 4 :(得分:7)
您可以将heapq用于非整数元素(元组)
from heapq import *
heap = []
data = [(10,"ten"), (3,"three"), (5,"five"), (7,"seven"), (9, "nine"), (2,"two")]
for item in data:
heappush(heap, item)
sorted = []
while heap:
sorted.append(heappop(heap))
print sorted
data.sort()
print data == sorted
答案 5 :(得分:6)
您是否查看了heapq页面上的"Show Source" link?有一个例子,使用一个带有(int,char)元组列表的堆作为优先级队列的时间不到一半。
答案 6 :(得分:2)
这是有效的,适用于字符串或任何类型输入 - :)
pq = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>' # placeholder for a removed task
counter = itertools.count() # unique sequence count
def add_task(task, priority=0):
'Add a new task or update the priority of an existing task'
if task in entry_finder:
remove_task(task)
count = next(counter)
entry = [priority, count, task]
entry_finder[task] = entry
heappush(pq, entry)
def remove_task(task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop(task)
entry[-1] = REMOVED
def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pq:
priority, count, task = heappop(pq)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError('pop from an empty priority queue')
答案 7 :(得分:1)
我在https://pypi.python.org/pypi/fibonacci-heap-mod
有一个优先级队列/斐波纳契堆它不快(delete-min上的大常数c,即O(c * logn))。但是find-min,insert,reduce-key和merge都是O(1) - IOW,它很懒。
如果它在CPython上太慢,你可能会尝试Pypy,Nuitka甚至CPython + Numba:)
答案 8 :(得分:0)
我可以像Charlie Martin建议的那样使用
(priority, object)
,或者只为我的对象实现__cmp__
。
如果您希望插入的对象按特定规则划分优先级,我发现编写一个接受键函数的PriorityQueue
的简单子类非常有用。您不必手动插入(priority, object)
元组,处理感觉更自然。
演示所需行为:
>>> h = KeyHeap(sum)
>>> h.put([-1,1])
>>> h.put((-1,-2,-3))
>>> h.put({100})
>>> h.put([1,2,3])
>>> h.get()
(-1, -2, -3)
>>> h.get()
[-1, 1]
>>> h.get()
[1, 2, 3]
>>> h.get()
set([100])
>>> h.empty()
True
>>>
>>> k = KeyHeap(len)
>>> k.put('hello')
>>> k.put('stackoverflow')
>>> k.put('!')
>>> k.get()
'!'
>>> k.get()
'hello'
>>> k.get()
'stackoverflow'
Python 2代码
from Queue import PriorityQueue
class KeyHeap(PriorityQueue):
def __init__(self, key, maxsize=0):
PriorityQueue.__init__(self, maxsize)
self.key = key
def put(self, x):
PriorityQueue.put(self, (self.key(x), x))
def get(self):
return PriorityQueue.get(self)[1]
Python 3代码
from queue import PriorityQueue
class KeyHeap(PriorityQueue):
def __init__(self, key, maxsize=0):
super().__init__(maxsize)
self.key = key
def put(self, x):
super().put((self.key(x), x))
def get(self):
return super().get()[1]
显然,如果你试图插入一个你的密钥函数无法处理的对象,调用put
会(并且应该!)引发错误。
答案 9 :(得分:0)
如果您想保持整个列表有序,而不仅仅是最高价值,我已经在多个项目中使用了此代码的一些变体,这是用类似的api替代标准list
类的一滴:
import bisect
class OrderedList(list):
"""Keep a list sorted as you append or extend it
An ordered list, this sorts items from smallest to largest using key, so
if you want MaxQueue like functionality use negative values: .pop(-1) and
if you want MinQueue like functionality use positive values: .pop(0)
"""
def __init__(self, iterable=None, key=None):
if key:
self.key = key
self._keys = []
super(OrderedList, self).__init__()
if iterable:
for x in iterable:
self.append(x)
def key(self, x):
return x
def append(self, x):
k = self.key(x)
# https://docs.python.org/3/library/bisect.html#bisect.bisect_right
i = bisect.bisect_right(self._keys, k)
if i is None:
super(OrderedList, self).append((self.key(x), x))
self._keys.append(k)
else:
super(OrderedList, self).insert(i, (self.key(x), x))
self._keys.insert(i, k)
def extend(self, iterable):
for x in iterable:
self.append(x)
def remove(self, x):
k = self.key(x)
self._keys.remove(k)
super(OrderedList, self).remove((k, x))
def pop(self, i=-1):
self._keys.pop(i)
return super(OrderedList, self).pop(i)[-1]
def clear(self):
super(OrderedList, self).clear()
self._keys.clear()
def __iter__(self):
for x in super(OrderedList, self).__iter__():
yield x[-1]
def __getitem__(self, i):
return super(OrderedList, self).__getitem__(i)[-1]
def insert(self, i, x):
raise NotImplementedError()
def __setitem__(self, x):
raise NotImplementedError()
def reverse(self):
raise NotImplementedError()
def sort(self):
raise NotImplementedError()
默认情况下,它可以处理(priority, value)
之类的元组,但是您也可以像这样自定义它:
class Val(object):
def __init__(self, priority, val):
self.priority = priority
self.val = val
h = OrderedList(key=lambda x: x.priority)
h.append(Val(100, "foo"))
h.append(Val(10, "bar"))
h.append(Val(200, "che"))
print(h[0].val) # "bar"
print(h[-1].val) # "che"
答案 10 :(得分:0)
一个简单的工具:
因为PriorityQueue
首先较低。
from queue import PriorityQueue
class PriorityQueueWithKey(PriorityQueue):
def __init__(self, key=None, maxsize=0):
super().__init__(maxsize)
self.key = key
def put(self, item):
if self.key is None:
super().put((item, item))
else:
super().put((self.key(item), item))
def get(self):
return super().get(self.queue)[1]
a = PriorityQueueWithKey(abs)
a.put(-4)
a.put(-3)
print(*a.queue)
答案 11 :(得分:0)
我正在使用queue.PriorityQueue
这样在python 3中实现function Search(str) {
const onlyBrackets = str.replace(/[a-zA-Z]/g, "");
const left = onlyBrackets.replace(/[)]/g, "");
const right = onlyBrackets.replace(/[(]/g, "");
str = left.length === right.length ? 1 : 0
return str
}
console.log(Search("(coder)(byte))")) // 0
console.log(Search("(c(oder))b(yte)")) // 1
-
priority queue