我正在重塑我公司的小时注册数据,以适应某种格式。我已将输入修改为如下所示:
employee project month day hours
1 A 16-001 9 9 5
2 B 16-001 9 29 1
3 A 16-001 9 3 5
4 B 16-001 9 28 2
5 A 16-002 9 8 6
6 B 16-002 9 9 4
7 A 16-002 10 25 6
8 B 16-002 10 21 8
9 A overig 10 6 6
10 B overig 10 17 7
11 A overig 10 9 1
12 B overig 10 10 7
#reproducicle data:
df <- data.frame(employee = rep(c("A","B"),6),project=rep(c("16-001","16-002","overig"), each=4), month=rep(c(9,10),each=6),day=sample(1:30,12,replace=T), hours=sample(1:8,12,replace=T))
#Now, I need to move this to a cross table:
res <- ftable(xtabs(hours~month+employee+project+day, aggregate(hours~month+employee+project+day, data=df, FUN=sum)))
#And put this cross table in a data.frame (for export to csv)
library(reshape2)
df_res <- dcast(as.data.frame(res), as.formula(paste(paste(names(attr(res, "row.vars")), collapse="+"), "~", paste(names(attr(res, "col.vars"))))))
df_res
month employee project 3 6 8 9 10 17 21 25 28 29
1 9 A 16-001 5 0 0 5 0 0 0 0 0 0
2 9 A 16-002 0 0 6 0 0 0 0 0 0 0
3 9 A overig 0 0 0 0 0 0 0 0 0 0
4 9 B 16-001 0 0 0 0 0 0 0 0 2 1
5 9 B 16-002 0 0 0 4 0 0 0 0 0 0
6 9 B overig 0 0 0 0 0 0 0 0 0 0
7 10 A 16-001 0 0 0 0 0 0 0 0 0 0
8 10 A 16-002 0 0 0 0 0 0 0 6 0 0
9 10 A overig 0 6 0 1 0 0 0 0 0 0
10 10 B 16-001 0 0 0 0 0 0 0 0 0 0
11 10 B 16-002 0 0 0 0 0 0 8 0 0 0
12 10 B overig 0 0 0 0 7 7 0 0 0 0
我不确定这是最好的方法,但格式现在很好。但是,我需要将所有日期作为列,而不仅仅是我的data.frame中的日期(所以31列,最好是不存在的日期(如sep 31),NA为NA,其余为0。建议如何获得?
答案 0 :(得分:1)
我认为这是一个可以接受的解决方案,它也将处理闰年(奖励积分)。仍然利用tidyr::spread()
使用drop = F
的漂亮因子填充行为,但现在使用函数lubridate::days_in_month()
仅传播但到目前为止。我们走了:
library(tidyr)
library(lubridate)
library(purrr)
df$year <- 2016
df$num_in_month <- ymd(paste(df$year, df$month, df$day)) %>%
days_in_month()
df %>% split(.$month) %>%
map(~mutate(., day = factor(day, levels = 1:unique(num_in_month)))) %>%
map(~spread(., key = day, value = hours, fill = 0, drop = F)) %>%
bind_rows() %>%
select(-num_in_month)
employee project month year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 A 16-001 9 2016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 8 0 0 NA
2 A 16-002 9 2016 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA
3 B 16-001 9 2016 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 NA
4 B 16-002 9 2016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA
5 A 16-002 10 2016 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 A overig 10 2016 0 4 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 B 16-002 10 2016 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 B overig 10 2016 0 0 0 0 6 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
干杯