我正在使用基于Theano的自动编码器进行一些工作,将输入作为高斯混合物的样本,一个隐藏层。我期望输出与输入相同,但我没有实现。我受到this实施教程的启发。自动编码器只有一个隐藏层也足以恢复输出的精确副本吗?
我的代码如下所示:
` def train(self, n_epochs=100, mini_batch_size=1, learning_rate=0.01):
index = T.lscalar()
x=T.matrix('x')
params = [self.W, self.b1, self.b2]
hidden = self.activation_function(T.dot(x, self.W)+self.b1)
output = T.dot(hidden,T.transpose(self.W))+self.b2
output = self.output_function(output)
# Use mean square error
L = T.sum((x - output) ** 2)
cost = L.mean()
updates=[]
#Return gradient with respect to W, b1, b2.
gparams = T.grad(cost,params)
#Create a list of 2 tuples for updates.
for param, gparam in zip(params, gparams):
updates.append((param, param-learning_rate*gparam))
#Train given a mini-batch of the data.
train = th.function(inputs=[index], outputs=cost, updates=updates,
givens={x:self.X[index:index+mini_batch_size,:]})
import time
start_time = time.clock()
acc_cost = []
for epoch in xrange(n_epochs):
#print "Epoch:", epoch
for row in xrange(0,self.m, mini_batch_size):
cost = train(row)
acc_cost.append(cost)
plt.plot(range(n_epochs), acc_cost)
plt.ylabel("cost")
plt.xlabel("epochs")
plt.show()
# Format input data for plotable format
norm_data = self.X.get_value()
plot_var1 = []
plot_var1.append(norm_data[:,0])
plot_var2 = []
plot_var2.append(norm_data[:,1])
plt.plot(plot_var1, plot_var2, 'ro')
# Hidden output
x=T.dmatrix('x')
hidden = self.activation_function(T.dot(x,self.W)+self.b1)
transformed_data = th.function(inputs=[x], outputs=[hidden])
hidden_data = transformed_data(self.X.get_value())
#print "hidden_output ", hidden_data[0]
# final output
y=T.dmatrix('y')
W = T.transpose(self.W)
output = self.activation_function(T.dot(y,W) + self.b2)
transformed_data = th.function(inputs=[y], outputs=[output])
output_data = transformed_data(hidden_data[0])[0]
print "decoded_output ", output_data
# Format output data for plotable format
plot_var1 = []
plot_var1.append(output_data[:,0])
plot_var2 = []
plot_var2.append(output_data[:,1])
plt.plot(plot_var1, plot_var2, 'bo')
plt.show()
'
答案 0 :(得分:0)
在您的代码中:
params = [self.W, self.b1, self.b2]
hidden = self.activation_function(T.dot(x, self.W)+self.b1)
output = T.dot(hidden,T.transpose(self.W))+self.b2
您对输入和输出使用相同的权重。怎么样:
params = [self.W1, self.W2, self.b1, self.b2]
hidden = self.activation_function(T.dot(x, self.W1)+self.b1)
output = T.dot(hidden,self.W2)+self.b2
自动编码器不是PCA。如果你想使用相同的重量,将重量限制为正交可能是一个好主意。
否则,制作更深的AE可能有所帮助。由于只有一个独立的权重矩阵,所提出的模型很难表现为三层MLP的通用函数逼近。