我通过执行以下操作从保存的文件加载自动编码器,显示结构:
autoencoder = load_model("autoencoder_mse1.h5")
autoencoder.summary()
>>> ____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_8 (InputLayer) (None, 19) 0
____________________________________________________________________________________________________
dense_43 (Dense) (None, 16) 320 input_8[0][0]
____________________________________________________________________________________________________
dense_44 (Dense) (None, 16) 272 dense_43[0][0]
____________________________________________________________________________________________________
dense_45 (Dense) (None, 2) 34 dense_44[0][0]
____________________________________________________________________________________________________
dense_46 (Dense) (None, 16) 48 dense_45[0][0]
____________________________________________________________________________________________________
dense_47 (Dense) (None, 16) 272 dense_46[0][0]
____________________________________________________________________________________________________
dense_48 (Dense) (None, 19) 323 dense_47[0][0]
====================================================================================================
Total params: 1269
__________________
前四个层(包括InputLayer
)构成编码器部分。我想知道是否有快速抓住这四层的方法。到目前为止,我遇到的唯一可行解决方案是:
encoder = Sequential()
encoder.add(Dense(16, 19, weights=autoencoder.layers[1].get_weights()))
^并手动完成另外两个图层。我希望有一种方法能够以更有效的方式提取前四层。特别是因为.summary()
方法吐出了图层摘要。
编辑1(可能的解决方案): 我已经达成了以下解决方案,但我希望能提高效率(减少代码)。
encoder = Sequential()
for i,l in enumerate(autoencoder.layers[1:]):
if i==0:
encoder.add(Dense(input_dim=data.shape[1],output_dim=l.output_dim,
activation="relu",weights=l.get_weights()))
else:
encoder.add(Dense(output_dim=l.output_dim,activation="relu",weights=l.get_weights()))
if l.output_dim == 2:
break
答案 0 :(得分:2)
试试这个,让我知道它是否有效:
# TO get first four layers
model.layers[0:3]
#To get the input shape
model.layers[layer_of_interest_index].input_shape
#To get the input shape
model.layers[layer_of_interest_index].output_shape
# TO get weights matrices
model.layers[layer_of_interest_index].get_weights()
希望这有帮助。