WEKA中的多项logisitc回归

时间:2016-11-20 17:58:41

标签: weka logistic-regression

我正在使用WEKA工具进行多项Logistic回归。出于实验目的,我正在研究天气示例并尝试使用逻辑回归来预测Outlook特征。 Plz有助于解释结果。特别是系数的使用以及如何构造预测方程。 Outlook功能可以包含三个值(Sunny,Overcast,Rainy)。

=== Run information ===

Scheme:       weka.classifiers.functions.Logistic -R 1.0E-8 -M -1
Relation:     weather.symbolic
Instances:    14
Attributes:   5
              outlook
              temperature
              humidity
              windy
              play
Test mode:    10-fold cross-validation

=== Classifier model (full training set) ===

Logistic Regression with ridge parameter of 1.0E-8
Coefficients...
                                    Class
Variable                            sunny               overcast
================================================================
temperature=hot                   14.3585                45.2229
temperature=mild                  -6.0885               -34.2035
temperature=cool                  -7.0523                -4.1787
humidity                           1.1354               -31.1848
windy                              0.6535               -29.4463
play                               0.4818               -90.7874
Intercept                          4.6263                50.8973


Odds Ratios...
                                    Class
Variable                            sunny               overcast
================================================================
temperature=hot              1721195.3778  4.3658888975323775E19
temperature=mild                   0.0023                      0
temperature=cool                   0.0009                 0.0153
humidity                           3.1125                      0
windy                              1.9223                      0
play                               1.6191                      0

0 个答案:

没有答案