之前的用户问过How do I add confidence intervals to odds ratios in stargazer table?并概述了问题的明确解决方案。
目前,我正在手工输入我的桌子,这非常耗时。 example of my typed out table。这是使用的.txt文件的link。
我的模型将大小作为因变量(分类)和性别(分类),年龄(连续)和年份(连续)作为自变量。我正在使用mlogit
来建模变量之间的关系。
我用于模型的代码如下:
tattoo <- read.table("https://ndownloader.figshare.com/files/6920972",
header=TRUE, na.strings=c("unk", "NA"))
library(mlogit)
Tat<-mlogit.data(tattoo, varying=NULL, shape="wide", choice="size", id.var="date")
ml.Tat<-mlogit(size~1|age+sex+yy, Tat, reflevel="small", id.var="date")
library(stargazer)
OR.vector<-exp(ml.Tat$coef)
CI.vector<-exp(confint(ml.Tat))
p.values<-summary(ml.Tat)$CoefTable[,4]
#table with odds ratios and confidence intervals
stargazer(ml.Tat, coef=list(OR.vector), ci=TRUE, ci.custom=list(CI.vector), single.row=T, type="text", star.cutoffs=c(0.05,0.01,0.001), out="table1.txt", digits=4)
#table with coefficients and standard errors
stargazer(ml.Tat, type="text", single.row=TRUE, star.cutoffs=c(0.05,0.01,0.001), out="table1.txt", digits=4)
我尝试过的stargazer
代码显示在我的数据的一小部分内:
library(stargazer)
OR.vector<-exp(ml.Tat$coef)
CI.vector<-exp(confint(ml.Tat))
p.values<-summary(ml.Tat)$CoefTable[,4] #incorrect # of dimensions, unsure how to determine dimensions
stargazer(ml.Tat, coef=list(OR.vector), ci=TRUE, ci.custom=list(CI.vector), single.row=T, type="text", star.cutoffs=c(0.05,0.01,0.001), out="table1.txt", digits=4) #gives odds ratio (2.5%CI, 97.5%CI)
stargazer(ml.Tat, type="text", single.row=TRUE, star.cutoffs=c(0.05,0.01,0.001), out="table1.txt", digits=4) #gives coeff (SE)`
我可以将优势比与置信区间或标准误差或系数与置信区间和标准误差相结合,但是当我将所有三个一起写入时,ci=TRUE
函数似乎会覆盖SE默认值。
对于我的论文,我需要表格来显示系数,标准误差,置信区间和比值比(以及某种格式的p值)。观星者有没有办法包括所有四件事?也许在两个不同的栏目?我可以将表导出到excel,但是如果没有同一个观星表中的所有4个东西,我会被手动将上面的两个表放在一起。对于1个表来说这不是什么大问题,但我正在使用36个需要表格的模型(对于我的论文)。
如何使用观星者展示所有四件事? (优势比,置信区间,系数和标准误差)
答案 0 :(得分:1)
试图从观星者中提取这些值会很痛苦。来自stargazer调用的返回值只是字符行。相反,你应该看一下模型的结构。它类似于glm
结果的结构:
> names(ml.Tat)
[1] "coefficients" "logLik" "gradient" "hessian"
[5] "est.stat" "fitted.values" "probabilities" "residuals"
[9] "omega" "rpar" "nests" "model"
[13] "freq" "formula" "call"
summary.mlogit
的结果与summary.glm
:
> names(summary(ml.Tat))
[1] "coefficients" "logLik" "gradient" "hessian"
[5] "est.stat" "fitted.values" "probabilities" "residuals"
[9] "omega" "rpar" "nests" "model"
[13] "freq" "formula" "call" "CoefTable"
[17] "lratio" "mfR2"
所以你应该使用最有可能采用矩阵形式的[['CoefTable']]
值......因为它们应该与summary(mod)$ coefficients的值类似。
> summary(ml.Tat)$CoefTable
Estimate Std. Error t-value Pr(>|t|)
large:(intercept) -444.39366673 2.209599e+01 -20.1119625 0.000000e+00
medium:(intercept) -187.91353927 1.195601e+01 -15.7170716 0.000000e+00
unk:(intercept) 117.92620950 2.597647e+02 0.4539731 6.498482e-01
large:age 0.02508481 4.088134e-03 6.1360059 8.462202e-10
medium:age 0.00804593 2.567671e-03 3.1335519 1.727044e-03
unk:age 0.01841371 4.888656e-02 0.3766620 7.064248e-01
large:sexM 1.38163894 6.068763e-02 22.7663996 0.000000e+00
medium:sexM 0.73646230 3.304341e-02 22.2877210 0.000000e+00
unk:sexM 1.27203654 7.208632e-01 1.7646018 7.763071e-02
large:yy 0.21941592 1.098606e-02 19.9722079 0.000000e+00
medium:yy 0.09308689 5.947246e-03 15.6521007 0.000000e+00
unk:yy -0.06266765 1.292543e-01 -0.4848399 6.277899e-01
现在应该明确完成家庭作业的方式。
答案 1 :(得分:1)
Stargazer接受多个模型并将每个模型附加到新行。因此,您可以制作第二个模型并用比值比替换标准系数,并将其传递给stargazer
调用。
tattoo <- read.table("https://ndownloader.figshare.com/files/6920972",
header=TRUE, na.strings=c("unk", "NA"))
library(mlogit)
Tat<-mlogit.data(tattoo, varying=NULL, shape="wide", choice="size", id.var="date")
ml.Tat<-mlogit(size~1|age+sex+yy, Tat, reflevel="small", id.var="date")
ml.TatOR<-mlogit(size~1|age+sex+yy, Tat, reflevel="small", id.var="date")
ml.TatOR$coefficients <- exp(ml.TatOR$coefficients) #replace coefficents with odds ratios
library(stargazer)
stargazer(ml.Tat, ml.TatOR, ci=c(F,T),column.labels=c("coefficients","odds ratio"),
type="text",single.row=TRUE, star.cutoffs=c(0.05,0.01,0.001),
out="table1.txt", digits=4)
参数ci=c(F,T)
会抑制第一列中的置信区间(因此会显示SE),并在第二列中显示它。 column.labels
参数允许您为列命名。
====================================================================
Dependent variable:
-------------------------------------------------
size
coefficients odds ratio
(1) (2)
--------------------------------------------------------------------
large:(intercept) -444.6032*** (22.1015) 0.0000 (-43.3181, 43.3181)
medium:(intercept) -187.9871*** (11.9584) 0.0000 (-23.4381, 23.4381)
large:age 0.0251*** (0.0041) 1.0254*** (1.0174, 1.0334)
medium:age 0.0080** (0.0026) 1.0081*** (1.0030, 1.0131)
large:sexM 1.3818*** (0.0607) 3.9821*** (3.8632, 4.1011)
medium:sexM 0.7365*** (0.0330) 2.0886*** (2.0239, 2.1534)
large:yy 0.2195*** (0.0110) 1.2455*** (1.2239, 1.2670)
medium:yy 0.0931*** (0.0059) 1.0976*** (1.0859, 1.1093)
--------------------------------------------------------------------
Observations 18,162 18,162
R2 0.0410 0.0410
Log Likelihood -15,882.7000 -15,882.7000
LR Test (df = 8) 1,357.1140*** 1,357.1140***
====================================================================
Note: *p<0.05; **p<0.01; ***p<0.001