I've data of Total Returns and Stock Prices on a daily basis for some banks, from 1997 to 2015, such that:
DATE Bank1_TotalReturn Bank1_Price Bank2_TR Bank2_P ... and so on for all other banks
01/01/1997 103.13 10.43 NA NA
02/01/1997 104.66 11.12 153.89 23.08
03/01/1997 ... ... ... ...
...and so on
for all other
days until
31/12/2015
Using R, I need to convert them in "medium annual values", so that I obtain a single annual medium value both for Total returns and Prices, for each bank, obviously, in order to make a Panel dataset.
nb: data contains lots of missing values, code must consider that issue! :)
答案 0 :(得分:0)
您可以使用format
从DATE
中提取年份(一旦转换为Date
课程),将日期转换为日期年份。然后使用dplyr
:
library(dplyr)
res <- df %>% group_by(Year=format(as.Date(DATE,format="%d/%m/%Y"),"%Y")) %>%
summarise_at(vars(-DATE), median, na.rm=TRUE)
我们首先group_by
转换后的Year
,然后我们使用summarise_at
汇总除median
之外的每列的DATE
。请注意,我们将参数na.rm=TRUE
传递给median
以忽略NA
。
或使用aggregate
:
df$Year <- format(as.Date(df$DATE,format="%d/%m/%Y"),"%Y")
df <- df[,!(names(df)=="DATE")]
res <- aggregate(. ~ Year, data=df, FUN=median, na.rm=TRUE, na.action=NULL)
在这里,我们预处理df
将DATE
列更改为Year
,我们使用公式. ~ Year
指定聚合按Year
分组的所有列。请注意,在aggregate
中,我们指定na.action=NULL
,因为默认na.action will remove rows that have any
NA . Instead, we pass
na.rm = TRUE to the function
中位数to handle
NA`
为了说明,我增加了您发布的数据:
df <- structure(list(DATE = c("01/01/1997", "02/01/1997", "03/01/1997",
"04/01/1997", "01/01/1998", "02/01/1998", "03/01/1998", "04/01/1998"
), Bank1_TotalReturn = c(103.13, 104.66, 105.23, NA, 113.13,
114.66, 115.23, NA), Bank1_Price = c(10.43, 11.12, 12.15, NA,
11.43, 12.12, NA, 13.15), Bank2_TR = c(NA, 153.89, 145.89, 136.89,
140.92, 153.89, 145.89, 146.89), Bank2_P = c(NA, 23.08, NA, NA,
20.9, 23.08, 25.73, 25.98)), .Names = c("DATE", "Bank1_TotalReturn",
"Bank1_Price", "Bank2_TR", "Bank2_P"), class = "data.frame", row.names = c(NA,
-8L))
## DATE Bank1_TotalReturn Bank1_Price Bank2_TR Bank2_P
##1 01/01/1997 103.13 10.43 NA NA
##2 02/01/1997 104.66 11.12 153.89 23.08
##3 03/01/1997 105.23 12.15 145.89 NA
##4 04/01/1997 NA NA 136.89 NA
##5 01/01/1998 113.13 11.43 140.92 20.90
##6 02/01/1998 114.66 12.12 153.89 23.08
##7 03/01/1998 115.23 NA 145.89 25.73
##8 04/01/1998 NA 13.15 146.89 25.98
使用这两种方法的数据,结果是:
print(res)
## Year Bank1_TotalReturn Bank1_Price Bank2_TR Bank2_P
##1 1997 104.66 11.12 145.89 23.080
##2 1998 114.66 12.12 146.39 24.405
如果意图是计算均值而不是中位数,那么只需将mean
替换为median
。对于aggregate
解决方案:
res <- aggregate(. ~ Year, data=df, FUN=mean, na.rm=TRUE, na.action=NULL)
print(res)
## Year Bank1_TotalReturn Bank1_Price Bank2_TR Bank2_P
##1 1997 104.34 11.23333 145.5567 23.0800
##2 1998 114.34 12.23333 146.8975 23.9225