我有一个花车向量。我想在各种范围内反复找到该向量的子集。我当前的语法(DT[x > 1.8 & x < 2.9]
)似乎是矢量扫描(它相对较慢)。
是否有更快的语法利用二进制搜索基于范围/区间的data.tables子设置?
示例:
set.seed(123L)
x = runif(1E6)
DT = data.table(x, key = "x")
# For foverlaps()
DT[,xtemp:=x]
range = data.table(start = 0.04, end = 0.5, key=c("start", "end"))
microbenchmark::microbenchmark(
DT[x < 0.5 & x > 0.04],
x[x < 0.5 & x > 0.04],
foverlaps(DT, range, by.x = c("x", "xtemp"))
)
Unit: milliseconds
expr min lq mean median uq max neval
DT[x < 0.5 & x > 0.04] 12.65391 16.10852 18.43412 17.23268 17.76868 104.1112 100
x[x < 0.5 & x > 0.04] 16.48126 19.63882 21.65813 20.31534 20.95264 113.7965 100
foverlaps(DT, range, by.x = c("x", "xtemp")) 116.72732 131.93093 145.56821 140.09218 146.33287 226.6069 100
答案 0 :(得分:7)
基于the answer here,这似乎是某种改进。但是,此方案中将包含等于0.5的值:
bs <- function() DT[{ind <- DT[.(c(0.04, 0.5)), which=TRUE, roll=TRUE]; (ind[1]+1):ind[2]}]
vs <- function() x[x < 0.5 & x > 0.04]
x = runif(1E6)
DT = data.table(x, key = "x")
microbenchmark::microbenchmark(
bs(),
vs()
)
#Unit: milliseconds
# expr min lq mean median uq max neval
# bs() 3.594993 4.150932 5.002947 4.44695 4.952283 9.750284 100
# vs() 15.054460 16.217198 18.999877 17.45298 19.554958 113.623699 100
如果我们将vs()
修改为:
vs <- function() x[x <= 0.5 & x > 0.04]
两种方法的结果相同:
identical(bs()$x, sort(vs()))
# [1] TRUE
答案 1 :(得分:3)
最新版本的data.table添加了封装此行为的%between%
和%inrange%
运算符。 Psidom的基于滚动的解决方案似乎稍微慢了一些但是按预期处理所有类型(数字/整数)并且更加简洁。见下文。
# data.table version 1.10.4
# R version 3.3.1 (2016-06-21)
set.seed(123L)
library(data.table)
x = runif(1E6)
DT = data.table(x)
#Psidom Answer
psidom <- function() DT[{ind <- DT[.(c(0.04, 0.5)), which=TRUE, roll=TRUE, on=.(x)]; (ind[1]+1):ind[2]}]
# Unkeyed
microbenchmark::microbenchmark(
DT[x <= 0.5 & x >= 0.04],
x[x <= 0.5 & x >= 0.04],
DT[x %between% c(0.04, 0.5)],
DT[x %inrange% c(0.04, 0.5)],
DT[.(0.04, 0.5), on = .(x >= V1, x <= V2), .(x.x)]
)
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# DT[x <= 0.5 & x >= 0.04] 20.346712 23.983928 34.69493 25.21085 26.73657 281.4747 100 b
# x[x <= 0.5 & x >= 0.04] 19.581049 22.935144 31.61551 23.83557 25.99587 145.3632 100 b
# DT[x %between% c(0.04, 0.5)] 8.024091 9.293261 12.19035 11.38171 12.75843 116.5132 100 a
# DT[x %inrange% c(0.04, 0.5)] 77.108485 79.871207 91.05544 81.83722 84.66684 188.8674 100 c
# DT[.(0.04, 0.5), on = .(x >= V1, x <= V2), .(x.x)] 189.488658 195.487681 217.55708 198.52696 205.80428 318.1696 100 d
# Keyed
setkey(DT,x)
#Psidom Answer
psidom <- function() DT[{ind <- DT[.(c(0.04, 0.5)), which=TRUE, roll=TRUE, on=.(x)]; (ind[1]+1):ind[2]}]
microbenchmark::microbenchmark(
DT[x <= 0.5 & x >= 0.04],
x[x <= 0.5 & x >= 0.04],
DT[x %between% c(0.04, 0.5)],
DT[x %inrange% c(0.04, 0.5)],
DT[.(0.04, 0.5), on = .(x >= V1, x <= V2), .(x.x)],
psidom()
)
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# DT[x <= 0.5 & x >= 0.04] 14.550788 18.092458 21.012992 18.934781 20.055428 123.1174 100 b
# x[x <= 0.5 & x >= 0.04] 19.403718 22.401709 27.296872 23.707688 24.608270 128.9123 100 b
# DT[x %between% c(0.04, 0.5)] 5.439340 6.819262 10.789330 9.490118 10.561789 111.6523 100 a
# DT[x %inrange% c(0.04, 0.5)] 12.871260 13.894918 21.434823 16.888748 18.128147 123.4275 100 b
# DT[.(0.04, 0.5), on = .(x >= V1, x <= V2), .(x.x)] 49.277678 53.516350 61.422212 54.499675 55.869354 158.1861 100 c
# psidom() 4.615421 5.095880 9.482131 5.325707 8.316817 109.9318 100 a