我想在sklearn中使用管道,如下所示:
corpus = load_files('corpus/train')
stop_words = [x for x in open('stopwords.txt', 'r').read().split('\n')] # Uppercase!
countvec = CountVectorizer(stop_words=stop_words, ngram_range=(1, 2))
X_train, X_test, y_train, y_test = train_test_split(corpus.data, corpus.target, test_size=0.9,
random_state=0)
x_train_counts = countvec.fit_transform(X_train)
x_test_counts = countvec.transform(X_test)
k_fold = KFold(n=len(corpus.data), n_folds=6)
confusion = np.array([[0, 0], [0, 0]])
pipeline = Pipeline([
('vectorizer', CountVectorizer(stop_words=stop_words, ngram_range=(1, 2))),
('classifier', MultinomialNB()) ])
for train_indices, test_indices in k_fold:
pipeline.fit(x_train_counts, y_train)
predictions = pipeline.predict(x_test_counts)
但是,我收到此错误:
AttributeError: lower not found
我看过这篇文章:
AttributeError: lower not found; using a Pipeline with a CountVectorizer in scikit-learn
但我将一个字节列表传递给矢量化器,所以这不应该是问题。
修改
corpus = load_files('corpus')
stop_words = [x for x in open('stopwords.txt', 'r').read().split('\n')]
X_train, X_test, y_train, y_test = train_test_split(corpus.data, corpus.target, test_size=0.5,
random_state=0)
k_fold = KFold(n=len(corpus.data), n_folds=6)
confusion = np.array([[0, 0], [0, 0]])
pipeline = Pipeline([
('vectorizer', CountVectorizer(stop_words=stop_words, ngram_range=(1, 2))),
('classifier', MultinomialNB())])
for train_indices, test_indices in k_fold:
pipeline.fit(X_train[train_indices], y_train[train_indices])
predictions = pipeline.predict(X_test[test_indices])
现在我收到了错误:
TypeError: only integer arrays with one element can be converted to an index
2ND EDIT
corpus = load_files('corpus')
stop_words = [y for x in open('stopwords.txt', 'r').read().split('\n') for y in (x, x.title())]
k_fold = KFold(n=len(corpus.data), n_folds=6)
confusion = np.array([[0, 0], [0, 0]])
pipeline = Pipeline([
('vectorizer', CountVectorizer(stop_words=stop_words, ngram_range=(1, 2))),
('classifier', MultinomialNB())])
for train_indices, test_indices in k_fold:
pipeline.fit(corpus.data, corpus.target)
答案 0 :(得分:4)
您没有正确使用管道。您不需要传递向量化的数据,其想法是管道向量化数据。
# This is done by the pipeline
# x_train_counts = countvec.fit_transform(X_train)
# x_test_counts = countvec.transform(X_test)
k_fold = KFold(n=len(corpus.data), n_folds=6)
confusion = np.array([[0, 0], [0, 0]])
pipeline = Pipeline([
('vectorizer', CountVectorizer(stop_words=stop_words, ngram_range=(1, 2))),
('classifier', MultinomialNB()) ])
# also you are not using the indices...
for train_indices, test_indices in k_fold:
pipeline.fit(corpus.data[train_indices], corpus.target[train_indices])
predictions = pipeline.predict(corpus.data[test_indices])