与How to pass a parameter to only one part of a pipeline object in scikit learn?类似,我想将参数传递给管道的一部分。通常,它应该像以下一样正常工作:
estimator = XGBClassifier()
pipeline = Pipeline([
('clf', estimator)
])
并执行
pipeline.fit(X_train, y_train, clf__early_stopping_rounds=20)
但它失败了:
/usr/local/lib/python3.5/site-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
114 """
115 Xt, yt, fit_params = self._pre_transform(X, y, **fit_params)
--> 116 self.steps[-1][-1].fit(Xt, yt, **fit_params)
117 return self
118
/usr/local/lib/python3.5/site-packages/xgboost-0.6-py3.5.egg/xgboost/sklearn.py in fit(self, X, y, sample_weight, eval_set, eval_metric, early_stopping_rounds, verbose)
443 early_stopping_rounds=early_stopping_rounds,
444 evals_result=evals_result, obj=obj, feval=feval,
--> 445 verbose_eval=verbose)
446
447 self.objective = xgb_options["objective"]
/usr/local/lib/python3.5/site-packages/xgboost-0.6-py3.5.egg/xgboost/training.py in train(params, dtrain, num_boost_round, evals, obj, feval, maximize, early_stopping_rounds, evals_result, verbose_eval, learning_rates, xgb_model, callbacks)
201 evals=evals,
202 obj=obj, feval=feval,
--> 203 xgb_model=xgb_model, callbacks=callbacks)
204
205
/usr/local/lib/python3.5/site-packages/xgboost-0.6-py3.5.egg/xgboost/training.py in _train_internal(params, dtrain, num_boost_round, evals, obj, feval, xgb_model, callbacks)
97 end_iteration=num_boost_round,
98 rank=rank,
---> 99 evaluation_result_list=evaluation_result_list))
100 except EarlyStopException:
101 break
/usr/local/lib/python3.5/site-packages/xgboost-0.6-py3.5.egg/xgboost/callback.py in callback(env)
196 def callback(env):
197 """internal function"""
--> 198 score = env.evaluation_result_list[-1][1]
199 if len(state) == 0:
200 init(env)
IndexError: list index out of range
而
estimator.fit(X_train, y_train, early_stopping_rounds=20)
工作正常。
答案 0 :(得分:9)
对于早期停止轮次,您必须始终指定参数eval_set给出的验证集。以下是修复代码中错误的方法。
pipeline.fit(X_train, y_train, clf__early_stopping_rounds=20, clf__eval_set=[(test_X, test_y)])
答案 1 :(得分:7)
这是解决方案:https://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/13755/xgboost-early-stopping-and-other-issues需要传递early_stooping_rounds和watchlist / eval_set。不幸的是,这对我不起作用,因为监视列表中的变量需要预处理步骤,该步骤仅应用于管道中/我需要手动应用此步骤。
答案 2 :(得分:1)
我最近使用以下步骤为Xgboost使用eval度量和eval_set参数。
pipeline_temp = pipeline.Pipeline(pipeline.cost_pipe.steps[:-1])
X_trans = pipeline_temp.fit_transform(X_train[FEATURES],y_train)
eval_set = [(X_trans, y_train), (pipeline_temp.transform(X_test), y_test)]
pipeline_temp.steps.append(pipeline.cost_pipe.steps[-1])
pipeline_temp.fit(X_train[FEATURES], y_train,
xgboost_model__eval_metric = ERROR_METRIC,
xgboost_model__eval_set = eval_set)
joblib.dump(pipeline_temp, save_path)