具有延迟函数和non_overridable关键字的分段错误

时间:2016-11-09 15:22:33

标签: oop fortran fortran2003 fortran2008

我正在开发一个面向对象的Fortran代码,用于数值优化,抽象类型支持多态。因为它是一个很好的TDD实践,我试图在抽象类型class(generic_optimizer)中编写所有优化测试,然后应该由每个实例化的类运行,例如type(newton_raphson)

所有优化测试都以call my_problem%solve(...)为特色,在抽象类型中定义为deferred,当然在每种派生类型中都有不同的实现。

问题是:如果在每个非抽象类中我将延迟函数定义为non_overridable,我会得到分段错误,例如:

Program received signal SIGSEGV, Segmentation fault.
0x0000000000000000 in ?? ()

(gdb) where
#0  0x0000000000000000 in ?? ()
#1  0x0000000000913efe in __newton_raphson_MOD_nr_solve ()
#2  0x00000000008cfafa in MAIN__ ()
#3  0x00000000008cfb2b in main ()
#4  0x0000003a3c81ed5d in __libc_start_main () from /lib64/libc.so.6
#5  0x00000000004048f9 in _start ()

经过一些反复试验后,我注意到如果删除non_overridable声明,我可以避免错误。在这种情况下,它不是一个问题,但我想强制执行,因为此代码不太可能有两个级别的多态。我是否违反了标准的任何要求?

以下是重现错误的示例代码。我一直用gfortran 5.3.0和6.1.0进行测试。

module generic_type_module
    implicit none
    private

    type, abstract, public :: generic_type
        real(8) :: some_data
        contains
        procedure (sqrt_interface), deferred :: square_root
        procedure, non_overridable           :: sqrt_test
    end type generic_type

    abstract interface
       real(8) function sqrt_interface(this,x) result(sqrtx)
          import generic_type
          class(generic_type), intent(in) :: this
          real(8), intent(in) :: x
       end function sqrt_interface
    end interface

    contains

    subroutine sqrt_test(this,x)
        class(generic_type), intent(in) :: this
        real(8), intent(in) :: x
        print *, 'sqrt(',x,') = ',this%square_root(x)
    end subroutine sqrt_test

end module generic_type_module

module actual_types_module
    use generic_type_module
    implicit none
    private

    type, public, extends(generic_type) :: crashing
       real(8) :: other_data
       contains
       procedure, non_overridable :: square_root => crashing_square_root
    end type crashing
    type, public, extends(generic_type) :: working
       real(8) :: other_data
       contains
       procedure :: square_root => working_square_root
    end type working

    contains

    real(8) function crashing_square_root(this,x) result(sqrtx)
       class(crashing), intent(in) :: this
       real(8), intent(in) :: x
       sqrtx = sqrt(x)
    end function crashing_square_root
    real(8) function working_square_root(this,x) result(sqrtx)
       class(working), intent(in) :: this
       real(8), intent(in) :: x
       sqrtx = sqrt(x)
    end function working_square_root

end module actual_types_module

program deferred_test
    use actual_types_module
    implicit none
    type(crashing) :: crashes
    type(working)  :: works

    call works%sqrt_test(2.0_8)
    call crashes%sqrt_test(2.0_8)

end program

1 个答案:

答案 0 :(得分:0)

为了缩小问题范围,我从OP的代码中删除了抽象属性和数据成员,以便

module types
    implicit none

    type :: Type1
    contains
        procedure :: test
        procedure :: square => Type1_square
    endtype

    type, extends(Type1) :: Type2
    contains
       procedure, non_overridable :: square => Type2_square
    endtype

contains

    subroutine test( this, x )
        class(Type1) :: this
        real :: x
        print *, "square(", x, ") = ",this % square( x )
    end subroutine

    function Type1_square( this, x ) result( y )
       class(Type1) :: this
       real :: x, y
       y = -100      ! dummy
    end function

    function Type2_square( this, x ) result( y )
       class(Type2) :: this
       real :: x, y
       y = x**2
    end function

end module

program main
    use types
    implicit none
    type(Type1) :: t1
    type(Type2) :: t2

    call t1 % test( 2.0 )
    call t2 % test( 2.0 )
end program

使用此代码,gfortran-6给出了

square(   2.00000000     ) =   -100.000000
square(   2.00000000     ) =   -100.000000

而ifort- {14,16}和Oracle fortran 12.5给出

square(   2.000000     ) =   -100.0000    
square(   2.000000     ) =    4.000000

我也尝试用子程序替换函数(打印实际调用的例程):

    subroutine test( this, x )
        class(Type1) :: this
        real :: x, y
        call this % square( x, y )
        print *, "square(", x, ") = ", y
    end subroutine

    subroutine Type1_square( this, x, y )
        class(Type1) :: this
        real :: x, y
        print *, "Type1_square:"
        y = -100      ! dummy
    end subroutine

    subroutine Type2_square( this, x, y )
        class(Type2) :: this
        real :: x, y
        print *, "Type2_square:"
        y = x**2
    end subroutine

所有其他部分保持不变。然后,gfortran-6给出了

Type1_square:
square(   2.00000000     ) =   -100.000000    
Type1_square:
square(   2.00000000     ) =   -100.000000

而ifort- {14,16}和Oracle fortran 12.5给出

Type1_square:
square(   2.000000     ) =   -100.0000    
Type2_square:
square(   2.000000     ) =    4.000000 

如果我从上述代码中删除non_overridable,gfortran会提供与其他编译器相同的结果。所以,这可能是gfortran + non_overridable的一个特定问题(如果上面的代码符合标准)......

(OP出现分段错误的原因可能是gfortran访问了具有空指针的父类型(deferred)中的generic_type过程;如果是这种情况,则故事变得一致。)

修改

当我们将Type1声明为abstract时,gfortran的异常行为也会发生。具体来说,如果我们将Type1的定义更改为

    type, abstract :: Type1    ! now an abstract type (cannot be instantiated)
    contains
        procedure :: test
        procedure :: square => Type1_square
    endtype

和主程序

program main
    use types
    implicit none
    type(Type2) :: t2

    call t2 % test( 2.0 )
end program

我们得到了

ifort-16    : square(   2.000000     ) =    4.000000    
oracle-12.5 : square( 2.0 ) =  4.0
gfortran-6  : square(   2.00000000     ) =   -100.000000  

如果我们进一步使Type1中的square()deferred(即没有给出实现),那么使代码几乎等同于OP的情况,

type, abstract :: Type1  ! now an abstract type (cannot be instantiated)
contains
    procedure :: test
    procedure(Type1_square), deferred :: square  ! has no implementation yet
endtype

abstract interface
    function Type1_square( this, x ) result( y )
        import
        class(Type1) :: this
        real :: x, y
    end function
end interface

然后ifort-16和Oracle-12.5给出4.0 call t2 % test( 2.0 ),而gfortran-6导致分段错误。的确,如果我们编译为

$ gfortran -fsanitize=address test.f90   # on Linux x86_64

我们得到了

ASAN:SIGSEGV    (<-- or "ASAN:DEADLYSIGNAL" on OSX 10.9)
=================================================================
==22045==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 
                (pc 0x000000000000 bp 0x7fff1d23ecd0 sp 0x7fff1d23eac8 T0)
==22045==Hint: pc points to the zero page.

总的来说,好像gfortran(可能带有空指针)错误地调用Type1中的绑定名square()(没有实现)。更重要的是,如果我们从Type2的定义中删除non_overridable,gfortran也会给出4.0(没有分段错误)。