如何计算ScreenToWorld坐标?

时间:2016-11-08 23:25:44

标签: c++ glm-math

我有一个包含我的视图状态的对象,我希望能够从世界转换为屏幕坐标,这是有效的。但是我也希望能够从屏幕转换为世界坐标,我有以下代码:

#include <glm/glm.hpp>
#include <gmock/gmock.h>

class CoordinateSpace
{
public:
   CoordinateSpace(int w, int h)
   {
       mW = w;
       mH = h;
   }

   glm::vec2 WorldToScreen(const glm::vec2& worldPos)
   {
     return ((mProjection * mView) * glm::vec4(worldPos, 1, 1)) * glm::vec4(mW / 2, -mH / 2, 1, 1) + glm::vec4(mW / 2, mH / 2, 0, 0);
   }


    glm::vec2 ScreenToWorld(const glm::vec2& screenPos)
    {
       return (glm::inverse(mProjection * mView) * glm::vec4(screenPos, 1, 1)) * glm::vec4(mW / 2, -mH / 2, 1, 1) + glm::vec4(mW / 2, mH / 2, 0, 0);
    }

    void UpdateCamera()
    {
        glm::mat4 target_projection = glm::ortho(
            -mScreenSize.x / 2.0f, 
            mScreenSize.x / 2.0f, 
            mScreenSize.y / 2.0f, 
            -mScreenSize.y / 2.0f, 
            -1.0f,
            1.0f);

        glm::mat4 camMat = glm::translate(glm::mat4(1.0f), glm::vec3(-mCameraPosition, 0));
        mView = camMat;
        mProjection = target_projection;
    }

    glm::vec2 mScreenSize = glm::vec2;
    glm::vec2 mCameraPosition = glm::vec2;

protected:

    int mW = 0;
    int mH = 0;

    // 2d ortho projection
    glm::mat4 mProjection;

    // camera location into the world
    glm::mat4 mView;
};

TEST(CoordinateSpace, Conversion)
{
    CoordinateSpace coords(640, 480);
    coords.mCameraPosition = { 0.0f, 0.0f };
    coords.mScreenSize = { 640.0f, 480.0f };
    coords.UpdateCamera();

    const glm::vec2 actual1 = coords.WorldToScreen({ 50.0f, 100.0f });
    ASSERT_EQ(glm::round((640.0f/2)+50.0f), glm::round(actual1.x));
    ASSERT_EQ(glm::round((480.0f/2)+100.0f), glm::round(actual1.y));

    const glm::vec2 actual2 = coords.ScreenToWorld(actual1);
    ASSERT_EQ(glm::round(50.0f), glm::round(actual2.x));
    ASSERT_EQ(glm::round(100.0f), glm::round(actual2.y));
}

我得到50.0f而不是5.12032e+06,我如何正确计算ScreenToWorld

1 个答案:

答案 0 :(得分:1)

鉴于你有:

SCREENPOS =((PROJ * VIEW)* WORLDPOS)* A + B;

使用代数隔离WORLDPOS,我认为这样可行:

WORLDPOS =((SCREENPOS - B)/ A)* INV(PROJ * VIEW)

SO:

返回glm :: inverse(mProjection * mView)*((screenPos - glm :: vec4(mW / 2,mH / 2,0,0))/ glm :: vec4(mW / 2,-mH / 2 ,1,1));