我发现这个与算法设计有关的有趣问题,我无法正确解决它。
给定有向图G =(V,E),其使用邻接列表,并且整数k <1。 | V |,实现线性时间复杂度算法(O(n)),以检查图形G是否至少具有相同的indegree数的k个顶点。
假设n == | V | + | E |
答案 0 :(得分:1)
足以通过所有边,甚至通过所有边节点,并保持所有可能的不确定点的顶点数。
pyhon风格的方法草图:
def check(graph, k):
# For each vertex count indegree
indegrees = [0] * graph.number_of_nodes()
# 'Maps' number of vertices to indegree
num_with_indegree = [graph.number_of_nodes()] + [0] * (graph.number_of_nodes()-2)
# Pass through all edge innodes.
# This iteration is easy to implement with adjancency list graph implementation.
for in_node in graph.in_nodes():
# Increase indegree for a node
indegrees[in_node] += 1
# 'Move' vertex to it's indegree bucket
indegree = indegrees[in_node]
num_with_indegree[indegree-1] -= 1
num_with_indegree[indegree] += 1
# Returns true if any bucket has at least k vertices
return any(n >= k for n in num_with_indegree)